Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen beim Lernen zugeschaut

13.05.2008
Würzburger Forscher beobachten kleinste Strukturen der Synapse im lebenden Organismus

Wissenschaftler vom Rudolf-Virchow-Zentrum der Universität Würzburg haben kleinste Strukturen von Nervenzellen der Fruchtfliege, die für Lernen und Gedächtnis zuständig sind, bei der Entwicklung unter dem Mikroskop beobachtet.

Sie konnten zeigen, dass der Umbau einzelner Proteine ein grundlegender Schritt bei Lernvorgängen und der Gedächtnisbildung ist. Gemeinsam mit Kollegen der Universität Göttingen und Leipzig veröffentlichen sie ihre Ergebnisse heute online in der renommierten Fachzeitschrift Nature Neuroscience. Sie liefern damit einen wichtigen Baustein für das Verständnis dieser Prozesse.

Erst seit einigen Jahren ist bekannt, dass unser Gehirn beim Lernen stark verändert wird. Ein ganzes Netzwerk an Nervenzellen ist daran beteiligt, das stark dynamisch ist. Nervenzellen werden aus- und umgebaut, neue Verbindungen geknüpft oder bereits vorhandene effizienter gemacht. Dabei wird jede einzelne Nervenzelle, die aus vielen Strukturen besteht, umgestaltet. Diese Prozesse sind bisher nur wenig verstanden, unter anderem deswegen, weil sie mit bisherigen Mikroskoptechniken im lebenden Organismus gar nicht sichtbar waren.

Wissenschaftler um Prof. Dr. Manfred Heckmann und Prof. Dr. Stephan Sigrist konnten jetzt direkt im lebenden Organismus beobachten, wie einzelne Bestandteile der Synapsen, der Kontaktstellen zwischen Nervenzellen, verändert werden.

Die Wissenschaftler untersuchten dazu Kontaktstellen bei Larven der Fruchtfliege. An diesen Kontaktstellen werden Signale von einer Nervenzelle auf die andere weitergeleitet. Dies geschieht dadurch, dass Proteine in der nachgeschalteten Zelle von der vorgeschalteten aktiviert werden und diese die Nervenzelle dann erregen. In der nachgeschalteten Zelle markierten die Forscher ganz bestimmte Proteine, die bei Nervenzellen für das Lernen und die Gedächtnisbildung zuständig sind: Glutamat-Rezeptoren. Untersuchungen im Reagenzglas deuteten bereits darauf hin, dass Glutamat-Rezeptoren beim Lernen vermehrt gebildet werden und auch kleinste Veränderungen im Aufbau der Rezeptoren bei dem Vorgang wichtig sind. Das wollten die Forscher nun im lebenden Organismus beobachten.

Veränderungen im Aufbau der Rezeptoren konnten die Forscher im Fluoreszenzmikroskop durch verschiedenfarbige Markierungen erkennen. Der Rezeptor besitzt verschiedene Bausteine, die er individuell verändern kann. Je nach Baustein ändert sich die Intensität, mit der ein Signal weitergeleitet wird. Die Forscher verfolgten die Entwicklung der Kontaktstellen über einen Zeitraum von 24 Stunden. Währenddessen konnten sie deutliche Veränderungen im Aufbau der Glutamat-Rezeptoren sehen. Zu Beginn der Entwicklung wird ein Subtyp in den Glutamat-Rezeptor eingebaut, der Signale besonders effektiv weiterleitet, am Ende ihrer Entwicklung wird er durch einen anderen ausgetauscht, der Signale weniger effektiv leitet. Dieser Prozess wird stark reguliert.

"Das macht Sinn. Zu Beginn der Entwicklung der Nervenzelle müssen wenige Rezeptoren jeweils sehr effektiv arbeiten. Mit der Zeit bilden sich an den Kontaktstellen immer mehr dieser Rezeptoren, die dann in Summe ein gleiches Signal mit weniger Intensität erreichen können. Ist das ankommende Signal groß genug, so wird nur noch der langsame Typ eingebaut. Das wird von der Zelle selbst reguliert," so Stephan Sigrist.

Die Ergebnisse sind auf den Menschen übertragbar, da wir ähnliche Rezeptoren besitzen und liefern einen wichtigen Baustein nicht nur zum Verständnis von Lernen und Gedächtnisprozessen. Auch zu biomedizinischen Fragestellungen: Wie Signale durch Glutamat-Rezeptoren weitergeleitet werden scheint bei Epilepsie, Schizophrenie und Alzheimer eine wichtige Rolle zu spielen.

"Activity-dependent site-specific changes of glutamate receptor composition in vivo" A.Schmid, S. Hallermann, R.J. Kittel, O. Khorramshahi, A. Frölich, C. Quentin, T. Rasse, S. Mertel, M. Heckmann, S.J. Sigrist, 2008, Nature Neuroscience. Published online 11 May 2008; | doi:10.1038/nn.2122.

Gerne schicken wir Ihnen die Publikation auf Anfrage zu, Bilder können hier herunter geladen werden und unter Angabe der Quelle: (Nature Neuroscience, DOI: 10.1038/nn.2122) veröffentlicht werden.

Kontakt:
Sonja Jülich, Leiterin Öffentlichkeitsarbeit:
Tel.: 0174-2118850 (11.-12.05.08 nur telefonisch)
ab 12.05.08 wieder unter: sonja.juelich@virchow.uni-wuerzburg.de,
Tel.: 0931-20148714
Prof. Dr. Stephan Sigrist: stephan.sigrist@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Glutamat-Rezeptor Nervenzelle Organismus Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie