Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen beim Lernen zugeschaut

13.05.2008
Würzburger Forscher beobachten kleinste Strukturen der Synapse im lebenden Organismus

Wissenschaftler vom Rudolf-Virchow-Zentrum der Universität Würzburg haben kleinste Strukturen von Nervenzellen der Fruchtfliege, die für Lernen und Gedächtnis zuständig sind, bei der Entwicklung unter dem Mikroskop beobachtet.

Sie konnten zeigen, dass der Umbau einzelner Proteine ein grundlegender Schritt bei Lernvorgängen und der Gedächtnisbildung ist. Gemeinsam mit Kollegen der Universität Göttingen und Leipzig veröffentlichen sie ihre Ergebnisse heute online in der renommierten Fachzeitschrift Nature Neuroscience. Sie liefern damit einen wichtigen Baustein für das Verständnis dieser Prozesse.

Erst seit einigen Jahren ist bekannt, dass unser Gehirn beim Lernen stark verändert wird. Ein ganzes Netzwerk an Nervenzellen ist daran beteiligt, das stark dynamisch ist. Nervenzellen werden aus- und umgebaut, neue Verbindungen geknüpft oder bereits vorhandene effizienter gemacht. Dabei wird jede einzelne Nervenzelle, die aus vielen Strukturen besteht, umgestaltet. Diese Prozesse sind bisher nur wenig verstanden, unter anderem deswegen, weil sie mit bisherigen Mikroskoptechniken im lebenden Organismus gar nicht sichtbar waren.

Wissenschaftler um Prof. Dr. Manfred Heckmann und Prof. Dr. Stephan Sigrist konnten jetzt direkt im lebenden Organismus beobachten, wie einzelne Bestandteile der Synapsen, der Kontaktstellen zwischen Nervenzellen, verändert werden.

Die Wissenschaftler untersuchten dazu Kontaktstellen bei Larven der Fruchtfliege. An diesen Kontaktstellen werden Signale von einer Nervenzelle auf die andere weitergeleitet. Dies geschieht dadurch, dass Proteine in der nachgeschalteten Zelle von der vorgeschalteten aktiviert werden und diese die Nervenzelle dann erregen. In der nachgeschalteten Zelle markierten die Forscher ganz bestimmte Proteine, die bei Nervenzellen für das Lernen und die Gedächtnisbildung zuständig sind: Glutamat-Rezeptoren. Untersuchungen im Reagenzglas deuteten bereits darauf hin, dass Glutamat-Rezeptoren beim Lernen vermehrt gebildet werden und auch kleinste Veränderungen im Aufbau der Rezeptoren bei dem Vorgang wichtig sind. Das wollten die Forscher nun im lebenden Organismus beobachten.

Veränderungen im Aufbau der Rezeptoren konnten die Forscher im Fluoreszenzmikroskop durch verschiedenfarbige Markierungen erkennen. Der Rezeptor besitzt verschiedene Bausteine, die er individuell verändern kann. Je nach Baustein ändert sich die Intensität, mit der ein Signal weitergeleitet wird. Die Forscher verfolgten die Entwicklung der Kontaktstellen über einen Zeitraum von 24 Stunden. Währenddessen konnten sie deutliche Veränderungen im Aufbau der Glutamat-Rezeptoren sehen. Zu Beginn der Entwicklung wird ein Subtyp in den Glutamat-Rezeptor eingebaut, der Signale besonders effektiv weiterleitet, am Ende ihrer Entwicklung wird er durch einen anderen ausgetauscht, der Signale weniger effektiv leitet. Dieser Prozess wird stark reguliert.

"Das macht Sinn. Zu Beginn der Entwicklung der Nervenzelle müssen wenige Rezeptoren jeweils sehr effektiv arbeiten. Mit der Zeit bilden sich an den Kontaktstellen immer mehr dieser Rezeptoren, die dann in Summe ein gleiches Signal mit weniger Intensität erreichen können. Ist das ankommende Signal groß genug, so wird nur noch der langsame Typ eingebaut. Das wird von der Zelle selbst reguliert," so Stephan Sigrist.

Die Ergebnisse sind auf den Menschen übertragbar, da wir ähnliche Rezeptoren besitzen und liefern einen wichtigen Baustein nicht nur zum Verständnis von Lernen und Gedächtnisprozessen. Auch zu biomedizinischen Fragestellungen: Wie Signale durch Glutamat-Rezeptoren weitergeleitet werden scheint bei Epilepsie, Schizophrenie und Alzheimer eine wichtige Rolle zu spielen.

"Activity-dependent site-specific changes of glutamate receptor composition in vivo" A.Schmid, S. Hallermann, R.J. Kittel, O. Khorramshahi, A. Frölich, C. Quentin, T. Rasse, S. Mertel, M. Heckmann, S.J. Sigrist, 2008, Nature Neuroscience. Published online 11 May 2008; | doi:10.1038/nn.2122.

Gerne schicken wir Ihnen die Publikation auf Anfrage zu, Bilder können hier herunter geladen werden und unter Angabe der Quelle: (Nature Neuroscience, DOI: 10.1038/nn.2122) veröffentlicht werden.

Kontakt:
Sonja Jülich, Leiterin Öffentlichkeitsarbeit:
Tel.: 0174-2118850 (11.-12.05.08 nur telefonisch)
ab 12.05.08 wieder unter: sonja.juelich@virchow.uni-wuerzburg.de,
Tel.: 0931-20148714
Prof. Dr. Stephan Sigrist: stephan.sigrist@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Glutamat-Rezeptor Nervenzelle Organismus Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten