Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methan-Quelle im rechten Licht betrachtet

09.05.2008
UV-Strahlung und steigende Temperaturen erhöhen die Methan- Emissionen von Pflanzen

Pflanzen speichern ein Treibhausgas, geben aber ein anderes ab: Während sie Kohlendioxid binden, setzen sie Methan frei - wenn auch nur in geringen Mengen. Das haben Wissenschaftler des Max-Planck-Instituts für Chemie, der Universität Utrecht und des Agri-Food and Biosciences Institute in Belfast nun bestätigt. In zwei aktuellen Arbeiten haben sie ferner festgestellt, dass ein Teil des Treibhausgases aus Pektin, womit viele Pflanzen ihr Stützgerüst aufbauen, stammt. Da den Untersuchungen zufolge UV-Licht die Methan-Produktion der Pflanzen ankurbelt, erklärt sich auch, warum manche Forscher kein Methan aus Pflanzen nachweisen konnten: Sie zogen Gewächse unter Lichtquellen heran, die kein UV-Licht abstrahlten. (New Phytologist, 9. Mai 2008 Biogeosciences in press)


Methan-Quelle im Sonnenlicht: Pflanzen bilden das Treibhausgas unter UV-Strahlung, die auch im Sonnenlicht enthalten ist. Ein großer Teil des Gases wird aus Pektin freigesetzt - einem Bio-Polymer, aus dem das Stützgerüst von Blüten und Blättern besteht. Bild: Frank Keppler / MPI für Chemie

Die Meldung sorgte vor zwei Jahren für einige Aufregung: Frank Keppler und seine Kollegen hatten damals am Max-Planck-Institut für Kernphysik in Heidelberg zum ersten Mal beobachtet, dass Pflanzen Methan freisetzen. Und zwar an der Luft. Unter aeroben Bedingungen also, unter denen Bakterien kein Methan produzieren, wie sie es etwa aus Mooren blubbern lassen. Pflanzen sollten dieser Untersuchung zufolge einen wesentlichen Teil zum gesamten Methan in der Atmosphäre beitragen.

Nicht nur über die globale Bedeutung dieser pflanzlichen Methan-Emissionen entbrannte anschließend eine heftige Kontroverse. Manche Forscher zweifelten sogar, ob Pflanzen überhaupt das Treibhausgas freisetzen, das 25 Mal klimaschädlicher ist als Kohlendioxid. Nun haben Frank Keppler, der inzwischen am Max-Planck-Institut für Chemie forscht, und seine Kollegen jedoch mit detaillierten Versuchen nachgelegt. Demnach produzieren Pflanzen tatsächlich Methan, und zwar besonders viel, wenn sie mit UV-Licht bestrahlt werden.

... mehr zu:
»Methan »Treibhausgas »UV-Licht

Anerkennung von Kritikern

Die neuen Ergebnisse Kepplers erkennt auch Tom Dueck, Wissenschaftler der Universität im niederländischen Wageningen, in einem Kommentar an. Das freut Frank Keppler besonders. Dueck hatte Kepplers Ergebnisse nämlich stark angezweifelt, nicht zuletzt weil er und seine Mitarbeiter sie nicht reproduzieren konnten. Sie zogen Pflanzen jedoch in Gewächshäusern unter künstlichen Lichtquellen heran, die keine UV-Strahlung abgaben.

Frank Keppler und seine Kollegen, von denen einige inzwischen an der Universität Utrecht arbeiten, haben jetzt teils trockenes, teils frisches Material von mehr als 20 unterschiedlichen Pflanzen untersucht. "Wir haben diesmal bewusst nur Teile von Pflanzen wie Blätter verwendet, weil in lebenden Pflanzen möglicherweise Prozesse ablaufen, die das Ergebnis verzerren", sagt Keppler. Die Pflanzenteile haben die Forscher in einer Versuchsreihe mit UV-Licht bestrahlt, in einer anderen gleichzeitig bis zu 100 Grad Celsius erwärmt und in einer weiteren bei Temperaturen von 20 bis 100 Grad Celsius untersucht.

Dabei stellten sie fest, dass nicht alle Pflanzen gleich viel Methan emittieren. Je energiereicher jedoch das Licht ist, mit dem die Proben bestrahlt werden, desto mehr Treibhausgas geben sie ab. Noch höhere Raten erreicht die Produktion, wenn die Temperatur gleichzeitig erhöht wird. Ohne UV-Bestrahlung und bei einer Umgebungstemperatur von 22 Grad Celsius setzen die Pflanzen 100 bis 1000 Mal weniger Methan frei. Erst ab rund 80 Grad steigen die Emissionsraten auf Werte, die mit denen unter UV-Licht vergleichbar sind. Zudem setzt Hitze zunehmend weniger Methan frei, wenn die Forscher eine Probe mehrmals hintereinander aufheizen und abkühlen. Wenn die Wissenschaftler über einer Probe mehrmals eine UV-Lampe anschalten, geben sie dagegen immer gleich viel Methan ab. "UV-Licht setzt das Gas also offenbar nach einem anderen Reaktionsmechanismus frei als Hitze", so Keppler.

Ursprung des Methans identifiziert

Ein Bestandteil, aus dem UV-Licht das Treibhausgas in einem photochemischen Prozess erzeugt, ist Pektin - ein Polysaccharid, das viele Pflanzen als Gerüstmaterial einsetzen. Pektin enthält Methoxy-Gruppen, in denen die chemische Struktur des Methans schon andeutungsweise zu erkennen ist. Hinweise, dass sich daraus das Methan bildet, hatten die Wissenschaftler bereits vor zwei Jahren gefunden. Jetzt haben die Forscher diesen Mechanismus in einer weiteren Arbeit eindeutig nachgewiesen, und zwar mit einer Isotopenanalyse: Sie ersetzten die Wasserstoffatome in diesen Gruppen durch Deuterium - schweren Wasserstoff. Anschließend fanden sie das Deuterium im Methan wieder.

Nach diesem Mechanismus kann sich aber nicht sämtliches Methan bilden - denn bei den Experimenten mit UV-Licht entsteht auch Methan ohne Deuterium. Dazu passt auch, dass Cellulose unter UV-Licht ebenfalls Methan bildet, wenn auch deutlich weniger als aus Pektin. Cellulose besitzt im Gegensatz zu Pektin nämlich keine Methoxy-Gruppen. "Wir haben noch keine Idee, wie dieser alternative Mechanismus aussehen könnte", sagt Frank Keppler: "Gerade weil wir bislang nur einen Teil der Prozesse verstehen, die den Methan-Emissionen von Pflanzen zugrunde liegen, ist es schwierig, ihr globales Ausmaß abzuschätzen."

[PH]

Originalveröffentlichung:

Frank Keppler, John T.G. Hamilton, W. Colin McRoberts, Ivan Vigano, Marc Braß und Thomas Röckmann
Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies

New Phytologist, 9. Mai 2008

Ivan Vigano, Huib van Weelden, Rupert Holzinger, Frank Keppler, Andy McLeod und Thomas Röckmann
Effect of UV-radiation and temperature on the emission methane from plant biomass and structural components

Biogeosciences in press

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Methan Treibhausgas UV-Licht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie