Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren bei der Infektion in flagranti festgehalten

05.05.2008
Bei einer Infektion müssen sich Viren zunächst an Körperzellen binden, um Zugang zu erhalten und die Zelle in Besitz zu nehmen. Die Viren-Zell-Bindung ist der Moment, den der Biochemiker Prof. Thilo Stehle festhalten und genau studieren möchte. Dazu führt er aufwendige Röntgenstrukturanalysen durch. Möglicherweise lässt sich dieser frühe Schritt einer Vireninfektion in ferner Zukunft als Angriffspunkt für Medikamente nutzen

Biochemiker erforschen mithilfe der Röntgenstrukturanalyse die Bindung an Zellen.

Viren sind für Prof. Thilo Stehle vom Interfakultären Institut für Biochemie der Universität Tübingen faszinierende Gebilde. Sie sind keine eigenständigen Lebewesen, sondern beschränken sich mit ihrem kleinen Erbgut und ihrem sparsamen Aufbau auf das Notwendigste, um in lebende Zellen einzudringen und diese für ihre eigene Vermehrung umzuprogrammieren.

"Das ist ein geniales Konzept", sagt Thilo Stehle. Doch sind Viren deshalb auch unheimlich, zumal viele von ihnen schwere und tödliche Krankheiten hervorrufen können. Antibiotika sind gegen Viren machtlos, und auch die Antikörper des menschlichen Immunsystems sprechen auf diese Eindringlinge nicht immer ausreichend an.

Thilo Stehle hat sich die Erforschung des ersten Schritts einer Vireninfektion zur Aufgabe gemacht: die Bindung eines Virus an eine Zelle. "Dies wäre theoretisch ein interessanter Angriffspunkt für Medikamente. Bisher kann man ihn aber nicht nutzen, wir sind davon zurzeit auch noch weit entfernt. Unsere Arbeit gehört in die Grundlagenforschung", erklärt der Wissenschaftler. In seiner Arbeitsgruppe werden die an der Viren-Zell-Bindungsstelle beteiligten Proteine gereinigt, kristallisiert und mit Röntgenstrahlen durchleuchtet. Als Ergebnis erhält der Wissenschaftler eine bis auf die Ebene der Atome genaue dreidimensionale Strukturdarstellung der Interaktion.

Zu den Forschungsobjekten in Thilo Stehles Arbeitsgruppe gehören zum Beispiel Adenoviren, die eine Reihe von Infektionen wie Erkältungen oder Magen-Darm-Erkrankungen beim Menschen hervorrufen können. "Infektionen mit Adenoviren sind im Allgemeinen nicht übermäßig gefährlich, aber vor einiger Zeit sind in den USA völlig überraschend eine ganze Reihe von jungen Leuten daran gestorben", sagt der Wissenschaftler.

Auch bei Coronaviren, von denen manche Typen beim Menschen Erkältungssymptome auslösen, sei zumindest ein Fall bekannt - das sogenannte SARS-Coronavirus -, in dem von heute auf morgen gefährliche Veränderungen aufgetreten sind, die die Infektion plötzlich tödlich machten. "Wahrscheinlich konnte man die gefährlichen Viren nur so schnell eindämmen, weil in China die infizierten Menschen radikal isoliert wurden", vermutet Stehle.

Auch von Mäusen sei ein Tumorvirus bekannt, das bei Austausch eines einzigen Proteinbausteins, einer Aminosäure, keine Tumoren mehr auslöst. Der Forscher ist überzeugt davon, dass manche gefährliche Veränderung bei Viren mit veränderten Bindungseigenschaften zu tun hat, sodass die Viren zum Beispiel neue Gewebetypen angreifen können. Denn die Viren können nicht einfach überall in Zellen eindringen, sondern nur dort, wo sie passende Rezeptoren finden. Daher will Stehle die Viren-Zell-Kontakte eingehend erforschen, um diesen Vorgang in ferner Zukunft für therapeutische Zwecke gezielt stören zu können.

Die Biochemiker machen eine Strukturanalyse der Viren-Zell-Bindung, die bis auf die Ebene der Atome geht. "Für den ganzen Analyseprozess muss man jeweils zwei bis drei Jahre einkalkulieren", sagt Stehle. Die Reinigung der an der Bindungsstelle beteiligten Proteine dauere einige Monate. "Daraus züchten wir einen Kristall, der also die Proteine in ganz reiner Form enthält.

Es passiert aber oft, dass die Kristalle nicht so wachsen wie gewünscht." Bei der Züchtung des Kristalls werde dem gereinigten Protein das Wasser entzogen. Der minimal kleine Tropfen werde versiegelt und schließlich das Lösungsmittel entzogen. Zehn bis 20 Milligramm Proteinkristall werden für die Röntgenuntersuchung gebraucht. "Wir können all diese Arbeitsschritte hier im Institutsgebäude machen, bis hin zur Röntgenuntersuchung", sagt Stehle, "allerdings ist es manchmal sinnvoll, noch stärkere Röntgenstrahlen zu nutzen. Im Synchrotron zum Beispiel in Grenoble sind sie bis zu 1000-mal stärker als in Tübingen, dorthin, in die Schweiz oder ans DESY in Hamburg gehen wir öfter mit unseren Proteinkristallen."

Wenn man hochfokussierte Röntgenstrahlen in einen Proteinkristall hineinschießt, werden diese vom Kristall reflektiert, und man erhält auf einem Schirm ein für jeden Proteinkomplex charakteristisches Streumuster. "Um aus diesem Bild auf die Proteinstruktur zurückschließen zu können, sind komplexe Rechnungen notwendig", erklärt Thilo Stehle. Teilweise müssen die Forscher ihre Kristalle allerdings mit Schwermetallen wie Quecksilber oder Uran dotieren, um brauchbare Muster zu bekommen. "Insgesamt ist die Methode sehr genau", sagt Stehle. "Und bei den Rechnungen haben wir auch immer wieder Hilfe von anderen Arbeitsgruppen in der Welt über das Internet." Die Methode der Röntgenstrukturanalyse verwendeten auch andere Forscher, aber meistens mit einem ganz anderen Forschungsthema, daher gebe es häufig keine direkte Konkurrenz untereinander.

Die dreidimensionalen Darstellungen der Viren-Zell-Kontakte lassen erkennen, wie kompliziert der Bindungsvorgang teilweise ist. Nicht immer handelt es sich um das Prinzip von Schlüssel und Schloss, die genau ineinander passen. Vielmehr finden sich auch Klappmechanismen oder eine Art Zwei-Punkt-Bindung, bei der die zweite Bindung erst möglich wird, wenn die erste schon vollzogen ist. "Letztere Art der Bindung findet sich zum Beispiel beim HI-Virus", sagt Thilo Stehle. "Den Viren-Zell-Bindungsvorgang zu blockieren, hat noch niemand geschafft." Bisherige Medikamente zur Behandlung von Vireninfektionen beruhten auf anderen Mechanismen. Zum Beispiel verhindern Neuraminidase-Hemmer, die gegen Grippeviren eingesetzt werden, dass die in den eroberten Zellen produzierten Viren freigesetzt werden. Gegen die Aidserreger, die HI-Viren, werden sogenannte Protease-Hemmer eingesetzt, die ein viruseigenes Werkzeug hemmen. Dadurch fehlen den Viren funktionelle Bauteile, um sich zu vermehren.

"Adenoviren werden übrigens auch in der Gentherapie genutzt als sogenannte Vehikel, die gezielt bestimmte Gene in Körperzellen einschleusen", sagt der Wissenschaftler. Dadurch sollen in der Therapie fehlerhafte Gene repariert werden, die schwere Krankheiten verursachen. "Bisher wird ein Typ der Adenoviren genutzt, der relativ breit verschiedene Gewebe infiziert. Interessant wäre es, Viren als Vehikel zu entwickeln, die ganz spezifisch zum Beispiel nur auf Blutzellen gehen", sagt Stehle. Der Wissenschaftler stellt sich vor, dass dies durch ein "Re-Design" der Virenoberfläche zu erreichen wäre, sodass die Viren nur an ganz bestimmte Rezeptoren binden könnten. Auch dort stehe man aber noch ganz am Anfang der Forschung, sagt er.

Und auch auf einem weiteren Gebiet kann Thilo Stehle zusammen mit seiner Arbeitsgruppe mithilfe der Röntgenstrukturanalyse neue Erkenntnisse gewinnen: der Evolution von Viren. "Grundsätzlich können Viren in der Evolution nicht vor Zellen entstanden sein, da sie ohne Zellen gar nicht vermehrungsfähig wären", sagt Stehle. Er ist zufällig auf eine interessante Gemeinsamkeit bei Adenoviren und Reoviren, die Durchfälle vor allem bei Kindern verursachen, gestoßen. "Die Reoviren tragen außen ein stacheliges Kugelprotein namens Sigma 1, ein Bindungsprotein, das stark einem Bindungsprotein der Adenoviren ähnelt. Die stacheligen Anhänge haben eine ähnliche Struktur, binden auch teilweise an die gleichen Zellrezeptoren.

Die beiden Proteine sind evolutionär verwandt", sagt er. Dabei gehören die beiden Viren zu zwei ganz unterschiedlichen Familien mit unterschiedlichem Erbgut: das Adenovirus hat ein DNA-Genom, das Reovirus ein RNA-Genom. Möglicherweise haben die beiden Viren einen gemeinsamen Vorfahren oder sie haben irgendwann untereinander Gene ausgetauscht. "Das kann passieren, wenn zwei Viren dasselbe Gewebe befallen", erklärt Stehle.

Nähere Informationen:

Prof. Thilo Stehle
Interfakultäres Institut für Biochemie
Hoppe-Seyler-Straße 4
72076 Tübingen
Tel. 0 70 71/2 97 30 43
Fax 0 70 71/29 55 65
E-Mail thilo.stehle@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Adenovire Infektion Protein Röntgenstrahl Virus Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics