Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren bei der Infektion in flagranti festgehalten

05.05.2008
Bei einer Infektion müssen sich Viren zunächst an Körperzellen binden, um Zugang zu erhalten und die Zelle in Besitz zu nehmen. Die Viren-Zell-Bindung ist der Moment, den der Biochemiker Prof. Thilo Stehle festhalten und genau studieren möchte. Dazu führt er aufwendige Röntgenstrukturanalysen durch. Möglicherweise lässt sich dieser frühe Schritt einer Vireninfektion in ferner Zukunft als Angriffspunkt für Medikamente nutzen

Biochemiker erforschen mithilfe der Röntgenstrukturanalyse die Bindung an Zellen.

Viren sind für Prof. Thilo Stehle vom Interfakultären Institut für Biochemie der Universität Tübingen faszinierende Gebilde. Sie sind keine eigenständigen Lebewesen, sondern beschränken sich mit ihrem kleinen Erbgut und ihrem sparsamen Aufbau auf das Notwendigste, um in lebende Zellen einzudringen und diese für ihre eigene Vermehrung umzuprogrammieren.

"Das ist ein geniales Konzept", sagt Thilo Stehle. Doch sind Viren deshalb auch unheimlich, zumal viele von ihnen schwere und tödliche Krankheiten hervorrufen können. Antibiotika sind gegen Viren machtlos, und auch die Antikörper des menschlichen Immunsystems sprechen auf diese Eindringlinge nicht immer ausreichend an.

Thilo Stehle hat sich die Erforschung des ersten Schritts einer Vireninfektion zur Aufgabe gemacht: die Bindung eines Virus an eine Zelle. "Dies wäre theoretisch ein interessanter Angriffspunkt für Medikamente. Bisher kann man ihn aber nicht nutzen, wir sind davon zurzeit auch noch weit entfernt. Unsere Arbeit gehört in die Grundlagenforschung", erklärt der Wissenschaftler. In seiner Arbeitsgruppe werden die an der Viren-Zell-Bindungsstelle beteiligten Proteine gereinigt, kristallisiert und mit Röntgenstrahlen durchleuchtet. Als Ergebnis erhält der Wissenschaftler eine bis auf die Ebene der Atome genaue dreidimensionale Strukturdarstellung der Interaktion.

Zu den Forschungsobjekten in Thilo Stehles Arbeitsgruppe gehören zum Beispiel Adenoviren, die eine Reihe von Infektionen wie Erkältungen oder Magen-Darm-Erkrankungen beim Menschen hervorrufen können. "Infektionen mit Adenoviren sind im Allgemeinen nicht übermäßig gefährlich, aber vor einiger Zeit sind in den USA völlig überraschend eine ganze Reihe von jungen Leuten daran gestorben", sagt der Wissenschaftler.

Auch bei Coronaviren, von denen manche Typen beim Menschen Erkältungssymptome auslösen, sei zumindest ein Fall bekannt - das sogenannte SARS-Coronavirus -, in dem von heute auf morgen gefährliche Veränderungen aufgetreten sind, die die Infektion plötzlich tödlich machten. "Wahrscheinlich konnte man die gefährlichen Viren nur so schnell eindämmen, weil in China die infizierten Menschen radikal isoliert wurden", vermutet Stehle.

Auch von Mäusen sei ein Tumorvirus bekannt, das bei Austausch eines einzigen Proteinbausteins, einer Aminosäure, keine Tumoren mehr auslöst. Der Forscher ist überzeugt davon, dass manche gefährliche Veränderung bei Viren mit veränderten Bindungseigenschaften zu tun hat, sodass die Viren zum Beispiel neue Gewebetypen angreifen können. Denn die Viren können nicht einfach überall in Zellen eindringen, sondern nur dort, wo sie passende Rezeptoren finden. Daher will Stehle die Viren-Zell-Kontakte eingehend erforschen, um diesen Vorgang in ferner Zukunft für therapeutische Zwecke gezielt stören zu können.

Die Biochemiker machen eine Strukturanalyse der Viren-Zell-Bindung, die bis auf die Ebene der Atome geht. "Für den ganzen Analyseprozess muss man jeweils zwei bis drei Jahre einkalkulieren", sagt Stehle. Die Reinigung der an der Bindungsstelle beteiligten Proteine dauere einige Monate. "Daraus züchten wir einen Kristall, der also die Proteine in ganz reiner Form enthält.

Es passiert aber oft, dass die Kristalle nicht so wachsen wie gewünscht." Bei der Züchtung des Kristalls werde dem gereinigten Protein das Wasser entzogen. Der minimal kleine Tropfen werde versiegelt und schließlich das Lösungsmittel entzogen. Zehn bis 20 Milligramm Proteinkristall werden für die Röntgenuntersuchung gebraucht. "Wir können all diese Arbeitsschritte hier im Institutsgebäude machen, bis hin zur Röntgenuntersuchung", sagt Stehle, "allerdings ist es manchmal sinnvoll, noch stärkere Röntgenstrahlen zu nutzen. Im Synchrotron zum Beispiel in Grenoble sind sie bis zu 1000-mal stärker als in Tübingen, dorthin, in die Schweiz oder ans DESY in Hamburg gehen wir öfter mit unseren Proteinkristallen."

Wenn man hochfokussierte Röntgenstrahlen in einen Proteinkristall hineinschießt, werden diese vom Kristall reflektiert, und man erhält auf einem Schirm ein für jeden Proteinkomplex charakteristisches Streumuster. "Um aus diesem Bild auf die Proteinstruktur zurückschließen zu können, sind komplexe Rechnungen notwendig", erklärt Thilo Stehle. Teilweise müssen die Forscher ihre Kristalle allerdings mit Schwermetallen wie Quecksilber oder Uran dotieren, um brauchbare Muster zu bekommen. "Insgesamt ist die Methode sehr genau", sagt Stehle. "Und bei den Rechnungen haben wir auch immer wieder Hilfe von anderen Arbeitsgruppen in der Welt über das Internet." Die Methode der Röntgenstrukturanalyse verwendeten auch andere Forscher, aber meistens mit einem ganz anderen Forschungsthema, daher gebe es häufig keine direkte Konkurrenz untereinander.

Die dreidimensionalen Darstellungen der Viren-Zell-Kontakte lassen erkennen, wie kompliziert der Bindungsvorgang teilweise ist. Nicht immer handelt es sich um das Prinzip von Schlüssel und Schloss, die genau ineinander passen. Vielmehr finden sich auch Klappmechanismen oder eine Art Zwei-Punkt-Bindung, bei der die zweite Bindung erst möglich wird, wenn die erste schon vollzogen ist. "Letztere Art der Bindung findet sich zum Beispiel beim HI-Virus", sagt Thilo Stehle. "Den Viren-Zell-Bindungsvorgang zu blockieren, hat noch niemand geschafft." Bisherige Medikamente zur Behandlung von Vireninfektionen beruhten auf anderen Mechanismen. Zum Beispiel verhindern Neuraminidase-Hemmer, die gegen Grippeviren eingesetzt werden, dass die in den eroberten Zellen produzierten Viren freigesetzt werden. Gegen die Aidserreger, die HI-Viren, werden sogenannte Protease-Hemmer eingesetzt, die ein viruseigenes Werkzeug hemmen. Dadurch fehlen den Viren funktionelle Bauteile, um sich zu vermehren.

"Adenoviren werden übrigens auch in der Gentherapie genutzt als sogenannte Vehikel, die gezielt bestimmte Gene in Körperzellen einschleusen", sagt der Wissenschaftler. Dadurch sollen in der Therapie fehlerhafte Gene repariert werden, die schwere Krankheiten verursachen. "Bisher wird ein Typ der Adenoviren genutzt, der relativ breit verschiedene Gewebe infiziert. Interessant wäre es, Viren als Vehikel zu entwickeln, die ganz spezifisch zum Beispiel nur auf Blutzellen gehen", sagt Stehle. Der Wissenschaftler stellt sich vor, dass dies durch ein "Re-Design" der Virenoberfläche zu erreichen wäre, sodass die Viren nur an ganz bestimmte Rezeptoren binden könnten. Auch dort stehe man aber noch ganz am Anfang der Forschung, sagt er.

Und auch auf einem weiteren Gebiet kann Thilo Stehle zusammen mit seiner Arbeitsgruppe mithilfe der Röntgenstrukturanalyse neue Erkenntnisse gewinnen: der Evolution von Viren. "Grundsätzlich können Viren in der Evolution nicht vor Zellen entstanden sein, da sie ohne Zellen gar nicht vermehrungsfähig wären", sagt Stehle. Er ist zufällig auf eine interessante Gemeinsamkeit bei Adenoviren und Reoviren, die Durchfälle vor allem bei Kindern verursachen, gestoßen. "Die Reoviren tragen außen ein stacheliges Kugelprotein namens Sigma 1, ein Bindungsprotein, das stark einem Bindungsprotein der Adenoviren ähnelt. Die stacheligen Anhänge haben eine ähnliche Struktur, binden auch teilweise an die gleichen Zellrezeptoren.

Die beiden Proteine sind evolutionär verwandt", sagt er. Dabei gehören die beiden Viren zu zwei ganz unterschiedlichen Familien mit unterschiedlichem Erbgut: das Adenovirus hat ein DNA-Genom, das Reovirus ein RNA-Genom. Möglicherweise haben die beiden Viren einen gemeinsamen Vorfahren oder sie haben irgendwann untereinander Gene ausgetauscht. "Das kann passieren, wenn zwei Viren dasselbe Gewebe befallen", erklärt Stehle.

Nähere Informationen:

Prof. Thilo Stehle
Interfakultäres Institut für Biochemie
Hoppe-Seyler-Straße 4
72076 Tübingen
Tel. 0 70 71/2 97 30 43
Fax 0 70 71/29 55 65
E-Mail thilo.stehle@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Adenovire Infektion Protein Röntgenstrahl Virus Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften