Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reifeprüfung für Stammzellen

02.05.2008
Stammzellen können sich in 220 unterschiedliche Körperzellen verwandeln. Die Entwicklungswege dieser Zellen lassen sich nun systematisch beobachten und untersuchen: Mit zwei neuen Apparaten, die die Bedingungen im menschlichen Körper möglichst genau nachbilden.

Stammzellen sind Multitalente: Sie können 220 unterschiedliche Ent-wicklungswege einschlagen und sich in entsprechend viele spezialisier-te Körperzellen verwandeln. Diese Fähigkeit zur Differenzierung wollen sich Biologen und Mediziner zunutze machen, um gezielt Herz-, Haut- oder Nervenzellen für die Therapie verschiedener Krankheiten zu gewinnen.

Doch die derzeit praktizierten Techniken der Stammzellkultur sind noch wenig effizient. Welcher Anteil einer Stammzell-Mischung verwandelt sich in welche Körperzellen? Und unter welchen Bedingungen? "Wir brauchen Gerätesysteme, die immer wieder dasselbe machen und so statistisch abgesicherte Daten liefern", sagt Prof. Günter Fuhr, Leiter des Fraunhofer-Instituts für Biomedizinische Technik IBMT in St. Ingbert.

Zwei Prototypen von Apparaten zur Stammzelldifferenzierung ermöglichen es erstmals, komplexe Entwicklungswege dieser Zellen systematisch zu untersuchen. Sie sind das Ergebnis des internationalen Projekts "CellPROM" - "Cell Programming by Nanoscaled Devices", das die Europäische Union mit 16,7 Millionen Euro gefördert hat und das das IBMT koordinierte. "Die derzeit übliche Zellkultur ist zu weit weg von der natürlichen Situation", sagt Daniel Schmitt, Projektkoordinator von CellPROM. Denn im Körper kommen die Stammzellen mit gelösten Nähr- und Signalstoffen und einer Vielzahl unterschiedlicher Zellen in Berührung: Millionen von Proteinen sitzen in oder auf den Zellmembranen und regen Stammzellen dazu an, sich in spezialisierte Zellen zu verwandeln.

"Wir wollen den Stammzellen im Labor eine Oberfläche anbieten, die den Zellmembranen möglichst ähnlich ist", erklärt Schmitt: "Dazu hat das Konsortium verschiedene Verfahren entwickelt, mit denen sich unterschiedliche Biomoleküle effizient auf zellverträgliche Oberflächen bringen lassen."

In den beiden Automaten - MagnaLab und NazcaLab - kommen die Stammzellen in definierter Weise mit den Signalfaktoren in Kontakt: Im MagnaLab wachsen mehrere hundert Zellen auf Kultursubstraten, die mit Biomolekülen beschichtet sind. Im NazcaLab schwebt eine Vielzahl einzelner Zellen, von Nährlösung umspült, in parallelen Kanälen und trifft dort auf Mikropartikel, die mit Signalfaktoren bestückt sind. "Über ein Mikroskop und eine Kamera dokumentieren wir in Zeitrafferaufnahmen, wie sich einzelne Zellen teilen und differenzieren", sagt Schmitt.

Dass sich die Multitalente von Oberflächensignalen dazu anregen lassen, sich in spezialisierte Zellen zu verwandeln, belegten die Forscher an etwa 20 unterschiedlichen Zellmodellen.

Daniel Schmitt | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ibmt.fraunhofer.de

Weitere Berichte zu: Biomolekül Körperzelle Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

nachricht Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
24.03.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Preiswerte Katalysatoren finden und verstehen: Auf das Eisen kommt es an

24.03.2017 | Biowissenschaften Chemie

Neue Hoffnung für Leberkrebspatienten

24.03.2017 | Medizintechnik

Innovationslabor für neue Wege in die digitale Zukunft

24.03.2017 | Förderungen Preise