Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Anstandsdame entschleiert

27.06.2002


Max-Planck-Wissenschaftler entdecken für die Proteinfaltung wichtige Enzym-Klasse / Ansatz für die Entwicklung einer neuen Art von Antibiotika

Proteine sind essentielle Lebensbausteine, ihre Funktion hängt eng von ihrer dreidimensionalen Struktur ab. Zur Vermeidung fehlerhafter Faltungen verfügen Zellen deshalb über molekulare "Anstandsdamen", auch Chaperone genannt. Diese Helferproteine unterstützen andere Proteine bei der Faltung und tragen dazu bei, fehlerhafte Faltungen und ihre schädlichen Konsequenzen zu vermeiden. Forscher der Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung in Halle/Saale haben jetzt mit dem hsp70-Chaperon aus dem Bakterium Escherichia coli den ersten Vertreter einer neuen Enzymklasse identifiziert (Nature Structural Biology, Juni 2002), die auf enzymatischem Weg die Faltung von Protein-"Rohlingen" beeinflussen. Diese grundlegende Entdeckung zeigt auch neue Wege, wie krankmachende Bakterien künftig über die Störung ihrer Proteinfaltung durch neuartige Antibiotika außer Gefecht gesetzt werden könnten.


Biologische Prozesse benötigen für ihren Ablauf Proteine, die zur richtigen Zeit und am richtigen Ort im Organismus in einem funktionsfähigen Zustand vorliegen müssen. Die Funktion eines Proteins und die dreidimensionale Anordnung seiner Bausteine, d.h. seine Faltung, hängen eng miteinander zusammen. Fehlerhafte Faltungen führen oft zum Funktionsverlust des Proteins oder sogar zu toxischen Faltungsprodukten. Beispiele für faltungsbedingte Leiden sind neurodegenerativen Erkrankungen wie Morbus Alzheimer oder die Prionenkrankheiten, aber auch Cystische Fibrose oder Krebs.

Die Faltung und Umstrukturierung von Polypeptiden, also Proteinen hängt wesentlich von Rotationsbewegungen um chemische Bindungen ab. Die Hallenser Max-Planck-Wissenschaftler interessieren sich deshalb besonders für Enzyme, die als Biokatalysatoren in Zellen die Rotation um die normalerweise starre Kohlenstoff-Stickstoff-Bindung im Rückgrat einer aus Aminosäuren bestehenden Polypeptidkette beschleunigen. Erstmals haben sich die Forscher dabei den Umstand zunutze gemacht, dass die spektralen Eigenschaften einiger Dipeptide vom Rotationszustand des Peptidrückgrates abhängen. Sie untersuchten Protein-Proben daher mit Hilfe der UV-Spektroskopie. In ihrem Modell-Bakterium Escherichia coli gelang es ihnen tatsächlich Enzyme zu finden, die bei Proteinen eine sehr schnelle Drehung um die Kohlenstoff-Stickstoff-Bindung bewirken.

Bisher war eine solche durch Enzyme bewirkte Rotationsbeschleunigung nur für Polypeptide bekannt, die das Stickstoffatom der Aminosäure Prolin in der rotierenden Bindung enthalten. Demgegenüber wirkt die neue Enzymklasse auf die meisten der 20 Gen-kodierten Aminosäuren. Als ersten Vertreter dieser Enzyme identifizierten die Wissenschaftler ein für die Biosynthese von Proteinen in Escherichia coli bedeutsames Chaperon, das Hitzeschockprotein DnaK.

DnaK lässt starre Bindungen nicht nur in Dipeptiden, sondern auch in längerkettigen Peptiden und in entfalteten Proteinen schneller rotieren. Dazu braucht es keine energieliefernde Zusätze wie ATP. Obwohl schon seit längerem bekannt ist, dass DnaK hilft, Falschfaltungen zu vermeiden und die Ausbeute an funktionalen Proteinen in der Zelle zu erhöhen, wussten die Forscher bisher wenig über die Wirkungsweise dieser molekularen "Anstandsdame". Klar war, dass die Starrheit der Kohlenstoff-Stickstoff-Bindung die dreidimensionale Struktur nativer Proteine aufrechterhält und die Zahl der möglichen, energetisch günstigen Anordnungen der Aminosäuren in einer Polypeptidkette begrenzt.

In manchen Fällen, wie beim Aufrechterhalten von zellulären Funktionen unter Stressbedingungen, kann aber an bestimmten Stellen des Proteinrückgrates mehr Flexibilität erforderlich sein. DnaK bewerkstelligt dies, indem es die durch die Elektronenanordnung bedingte Starrheit der Kohlenstoff-Stickstoff-Bindung vermindert und gleichsam wie ein "Schmiermittel" an einer vorbestimmten Stelle in der Polypeptidkette wirkt. Da dieses Enzym danach noch weitere Bindungen angreifen und ebenfalls "schmieren" kann, vermuten die Forscher, dass dieses Enzym eine Art "Korrekturleser-Funktion" für ungünstige Winkelkombinationen innerhalb der jeweiligen Polypeptidkette hat.

Die Hallenser Proteinchemiker haben innerhalb des DnaK-Moleküls auch den genauen Ort ausgemacht, wo die Katalyse abläuft. In weiteren Experimenten wollen sie nun die Identität der anderen Enzymproteine bestimmen, bei denen sie die gleiche katalytische Aktivität festgestellt haben, sowie andere Organismen, vor allem aber menschliches Gewebe auf das Vorkommen dieser neuen Enzymklasse testen.

Diese Forschungsergebnisse eröffnen neue Perspektiven für therapeutische Anwendungen, wie zum Beispiel bei der Suche nach niedermolekularen Wirkstoffen, mit denen man die Funktion der Faltungshelfer in krankmachenden Bakterien gezielt lahm legen kann, ohne den gleichen Prozess in menschlichen Zellen zu beeinflussen. Dies wäre ein Weg zu neuartigen Antibiotika.

Dieses Projekt wurde durch die Max-Planck-Gesellschaft und den Fonds der Chemischen Industrie gefördert

Weitere Informationen erhalten Sie von:

Dr. Cordelia Schiene-Fischer
Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung
Tel.: 03 45 - 5 52 - 28 29
Fax.: 03 45 - 5 51 - 19 72
E-Mail: schiene@enzyme-halle.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie