Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Anstandsdame entschleiert

27.06.2002


Max-Planck-Wissenschaftler entdecken für die Proteinfaltung wichtige Enzym-Klasse / Ansatz für die Entwicklung einer neuen Art von Antibiotika

Proteine sind essentielle Lebensbausteine, ihre Funktion hängt eng von ihrer dreidimensionalen Struktur ab. Zur Vermeidung fehlerhafter Faltungen verfügen Zellen deshalb über molekulare "Anstandsdamen", auch Chaperone genannt. Diese Helferproteine unterstützen andere Proteine bei der Faltung und tragen dazu bei, fehlerhafte Faltungen und ihre schädlichen Konsequenzen zu vermeiden. Forscher der Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung in Halle/Saale haben jetzt mit dem hsp70-Chaperon aus dem Bakterium Escherichia coli den ersten Vertreter einer neuen Enzymklasse identifiziert (Nature Structural Biology, Juni 2002), die auf enzymatischem Weg die Faltung von Protein-"Rohlingen" beeinflussen. Diese grundlegende Entdeckung zeigt auch neue Wege, wie krankmachende Bakterien künftig über die Störung ihrer Proteinfaltung durch neuartige Antibiotika außer Gefecht gesetzt werden könnten.


Biologische Prozesse benötigen für ihren Ablauf Proteine, die zur richtigen Zeit und am richtigen Ort im Organismus in einem funktionsfähigen Zustand vorliegen müssen. Die Funktion eines Proteins und die dreidimensionale Anordnung seiner Bausteine, d.h. seine Faltung, hängen eng miteinander zusammen. Fehlerhafte Faltungen führen oft zum Funktionsverlust des Proteins oder sogar zu toxischen Faltungsprodukten. Beispiele für faltungsbedingte Leiden sind neurodegenerativen Erkrankungen wie Morbus Alzheimer oder die Prionenkrankheiten, aber auch Cystische Fibrose oder Krebs.

Die Faltung und Umstrukturierung von Polypeptiden, also Proteinen hängt wesentlich von Rotationsbewegungen um chemische Bindungen ab. Die Hallenser Max-Planck-Wissenschaftler interessieren sich deshalb besonders für Enzyme, die als Biokatalysatoren in Zellen die Rotation um die normalerweise starre Kohlenstoff-Stickstoff-Bindung im Rückgrat einer aus Aminosäuren bestehenden Polypeptidkette beschleunigen. Erstmals haben sich die Forscher dabei den Umstand zunutze gemacht, dass die spektralen Eigenschaften einiger Dipeptide vom Rotationszustand des Peptidrückgrates abhängen. Sie untersuchten Protein-Proben daher mit Hilfe der UV-Spektroskopie. In ihrem Modell-Bakterium Escherichia coli gelang es ihnen tatsächlich Enzyme zu finden, die bei Proteinen eine sehr schnelle Drehung um die Kohlenstoff-Stickstoff-Bindung bewirken.

Bisher war eine solche durch Enzyme bewirkte Rotationsbeschleunigung nur für Polypeptide bekannt, die das Stickstoffatom der Aminosäure Prolin in der rotierenden Bindung enthalten. Demgegenüber wirkt die neue Enzymklasse auf die meisten der 20 Gen-kodierten Aminosäuren. Als ersten Vertreter dieser Enzyme identifizierten die Wissenschaftler ein für die Biosynthese von Proteinen in Escherichia coli bedeutsames Chaperon, das Hitzeschockprotein DnaK.

DnaK lässt starre Bindungen nicht nur in Dipeptiden, sondern auch in längerkettigen Peptiden und in entfalteten Proteinen schneller rotieren. Dazu braucht es keine energieliefernde Zusätze wie ATP. Obwohl schon seit längerem bekannt ist, dass DnaK hilft, Falschfaltungen zu vermeiden und die Ausbeute an funktionalen Proteinen in der Zelle zu erhöhen, wussten die Forscher bisher wenig über die Wirkungsweise dieser molekularen "Anstandsdame". Klar war, dass die Starrheit der Kohlenstoff-Stickstoff-Bindung die dreidimensionale Struktur nativer Proteine aufrechterhält und die Zahl der möglichen, energetisch günstigen Anordnungen der Aminosäuren in einer Polypeptidkette begrenzt.

In manchen Fällen, wie beim Aufrechterhalten von zellulären Funktionen unter Stressbedingungen, kann aber an bestimmten Stellen des Proteinrückgrates mehr Flexibilität erforderlich sein. DnaK bewerkstelligt dies, indem es die durch die Elektronenanordnung bedingte Starrheit der Kohlenstoff-Stickstoff-Bindung vermindert und gleichsam wie ein "Schmiermittel" an einer vorbestimmten Stelle in der Polypeptidkette wirkt. Da dieses Enzym danach noch weitere Bindungen angreifen und ebenfalls "schmieren" kann, vermuten die Forscher, dass dieses Enzym eine Art "Korrekturleser-Funktion" für ungünstige Winkelkombinationen innerhalb der jeweiligen Polypeptidkette hat.

Die Hallenser Proteinchemiker haben innerhalb des DnaK-Moleküls auch den genauen Ort ausgemacht, wo die Katalyse abläuft. In weiteren Experimenten wollen sie nun die Identität der anderen Enzymproteine bestimmen, bei denen sie die gleiche katalytische Aktivität festgestellt haben, sowie andere Organismen, vor allem aber menschliches Gewebe auf das Vorkommen dieser neuen Enzymklasse testen.

Diese Forschungsergebnisse eröffnen neue Perspektiven für therapeutische Anwendungen, wie zum Beispiel bei der Suche nach niedermolekularen Wirkstoffen, mit denen man die Funktion der Faltungshelfer in krankmachenden Bakterien gezielt lahm legen kann, ohne den gleichen Prozess in menschlichen Zellen zu beeinflussen. Dies wäre ein Weg zu neuartigen Antibiotika.

Dieses Projekt wurde durch die Max-Planck-Gesellschaft und den Fonds der Chemischen Industrie gefördert

Weitere Informationen erhalten Sie von:

Dr. Cordelia Schiene-Fischer
Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung
Tel.: 03 45 - 5 52 - 28 29
Fax.: 03 45 - 5 51 - 19 72
E-Mail: schiene@enzyme-halle.mpg.de

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie