Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genetik trifft Physiologie: Hirnforschung auf kleinstem Raum

25.04.2008
Welche Aufgaben erfüllen einzelne Nervenzellen und wie funktioniert ihre Zusammenarbeit?

Diesen Fragen gehen die Wissenschaftler des Max-Planck-Instituts für Neurobiologie ausgerechnet in einem Gehirn nach, dessen Träger kleiner als ein Stecknadelkopf ist. Im Sehsystem der Fruchtfliege Drosophila können die Wissenschaftler nun genetische und physiologische Methoden kombinieren, wodurch die Forschung zum Verständnis der Funktion und Verschaltung von Nervenzellen bedeutend vorangetrieben wird.


Eine einzelne Nervenzelle aus dem Flugkontrollzentrum der Fruchtfliege
© MPI für Neurobiologie / M. Jösch

Das menschliche Gehirn besteht aus rund hundert Milliarden Nervenzellen und vielen Billionen Zellkontakten. Jede noch so kleine Reaktion und Bewegung wird durch die Aktivität und das Zusammenspiel dieser Nervenzellen gesteuert. Herauszufinden wie das im Einzelnen funktioniert, ist eine der großen Herausforderungen der modernen Neurobiologie.

Fliegen: Meister der visuellen Verarbeitung

Ein erster Schritt zum Verständnis solcher komplexen Nervensysteme ist die detailierte Analyse eines etwas einfacher aufgebauten Systems. Je nach Fragestellung werden dafür unterschiedliche Modellorganismen herangezogen. So wird die Verarbeitung von optischen Informationen am Max-Planck-Institut für Neurobiologie zum Beispiel am Gehirn der Fliege erforscht. Das Gehirn der Fliege besitzt vergleichsweise wenige Nervenzellen, wodurch die Untersuchung ihrer Zusammenarbeit im Zellverbund deutlich erleichtert wird. Gleichzeitig sind die Nervenzellen der Fliege äußerst effizient in der Verarbeitung optischer Eindrücke. Eine Schmeißfliege würde zum Beispiel einen Kinofilm mit 100 Bildern pro Sekunde noch als Einzelbilder erkennen, während der Mensch die dunklen Pausen bereits ab 24 Bildern pro Sekunde nicht mehr wahrnimmt. Um diese visuellen Eindrücke zu verarbeiten braucht das Flugkontrollzentrum im Gehirn der Fliege gerade einmal 60 Nervenzellen. Selbst wenn die Fliege mit 10 km/h durch den Raum schießt, bleibt dem Zellverbund noch genügend Zeit um Ausweichmanöver einzuleiten. Ein Verständnis dieser leistungsstarken optischen Verarbeitung wird auch zur Klärung genereller Mechanismen und Zusammenhänge in anderen Systemen beitragen.

Durchbruch in der Fliegenforschung

Die Zellverschaltung im Fliegen-Sehsystem wurde bislang vor allem an der Schmeißfliege untersucht. Während in einer Art "Fliegenkino" Streifenmuster an den Augen der Fliege vorbeilaufen (siehe Abbildung), kann die elektrische Antwort einzelner Nervenzellen mit Hilfe von Elektroden gemessen werden. Auf diese Weise konnten auch die Vorhersagen mathematischer Modelle zum Bewegungssehen der Fliege bestätigt werden. "Was jedoch genau zwischen den einzelnen Zellen passiert wissen wir auch nach knapp 40 Jahren Forschung nicht", erklärt Maximilian Jösch, dem es nun gelungen ist, die elektrischen Reaktionen auch im optischen System der Fruchtfliege zu messen. Elektroden an einzelnen Nervenzellen im Fruchtfliegengehirn anzubringen erscheint eine aufwendige Sisyphus-Arbeit, denn eine ganze Fruchtfliege ist in etwa so groß wie das Gehirn einer Schmeißfliege! Jedoch öffnet die nun mögliche Arbeit mit der Drosophila Fruchtfliege ganz neue Türen: Im Gegensatz zur Schmeißfliege stehen für die Drosophila-Forschung eine Vielzahl genetischer Methoden bereit. So können zum Beispiel einzelne Nervenzellen durch ein fluoreszierendes Protein markiert und so besser untersucht werden. Noch spannender ist die Möglichkeit, einzelne Nervenzellen gezielt aus einem Schaltkreis herauszunehmen. So kann mithilfe temperatur-sensitiver Mutationen eine leichte Temperaturveränderung die Datenübertragung einer bestimmten Zelle verhindern; Die Auswirkungen auf den Informationsfluss im Zellverbund können nun mit Hilfe von Elektroden dokumentiert werden.

Besseres Verständnis von Gehirnfunktionen

"Bislang wurden in der Drosophila-Forschung bestimmte Zellen ausgeschaltet und dann beobachtet, wie sich diese Veränderungen im Verhalten der Tiere wiederspiegelt", erklärt Alexander Borst, in dessen Abteilung das Sehsystem der Fliege erforscht wird. "Was jedoch auf zellulärer Ebene Auslöser für die Verhaltensänderungen war, blieb ungeklärt." Solche zugrunde liegenden elektrischen Zusammenhänge zwischen einzelnen Nervenzellen kann die Schmeißfliegenforschung klären, der bislang jedoch die Möglichkeit zur gezielten Manipulation fehlte. Die neue Verbindung zwischen den physiologischen und genetischen Methoden der Schmeiß- und Fruchtfliegenforschung ist daher ein bedeutender Schritt nach vorn. Dies sollte nicht nur die Entschlüsselung des Bewegungssehens der Fliege erheblich vorantreiben, sondern auch unser allgemeines Verständnis der Funktion und Verschaltung von Nervenzellen verbessern.

Dr. Stefanie Merker | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/scn/research/index.html

Weitere Berichte zu: Elektrode Fliege Fruchtfliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie