Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fehler entstehen im Kopf

23.04.2008
Wissenschaftler zeigen, dass fehlerhaftem Verhalten bei monotonen Aufgaben spezifische Veränderungen der Hirnaktivität vorausgehen

Monotone Tätigkeiten liegen uns Menschen nicht besonders - hier erweisen wir uns als deutlich fehleranfälliger als Maschinen. Offenbar ist das Auftreten von Fehlern jedoch nicht nur durch augenblickliche Veränderungen der Konzentration oder Hirnaktivität erklärbar, sondern basiert auf graduellen Fehlanpassungen.


fMRT-Darstellung der Hirnaktivität, die Fehlern vorausgeht: Hirnregionen, deren Aktivität vor Fehlern graduell abfällt (oben) bzw. ansteigt (unten). Bild: MPI für neurologische Forschung

Mithilfe der funktionellen Magnetresonanztomografie (fMRT) haben Wissenschaftler um Markus Ullsperger vom Max-Planck-Institut für neurologische Forschung in Köln die Hirnaktivität von Versuchspersonen abgebildet, während diese entsprechende kognitive Experimente durchführten. Die Wissenschaftler präsentierten den Probanden in der Mitte eines Bildschirms sehr kurz, nämlich nur 30 Millisekunden lang, jeweils einen in eine bestimmte Richtung weisenden Pfeil. Die Versuchsperson sollte so schnell wie möglich die rechte oder linke Antworttaste drücken - je nach Richtung des gezeigten Pfeils.

Diese Aufgabe erscheint zunächst leicht. Tatsächlich erfordert sie aber allerhöchste Konzentration, denn ober- und unterhalb des zu betrachtenden Pfeils wurden ebenfalls Pfeile dargeboten - sie flankieren den Pfeil in der Mitte, weshalb die Wissenschaftler auch von einer "Flankierreizaufgabe" sprechen. Diese Flankierreize sind für die Aufgabe irrelevant, lenken die Versuchsperson aber stark ab. Zeigen die Flankierreize in dieselbe Richtung wie der mittlere Zielreiz, dann unterstützen sie die richtige Reaktion, zeigen sie jedoch in die entgegengesetzte Richtung, so stören sie massiv und führen immer wieder zu Fehlern.

... mehr zu:
»Flankierreiz »Hirnaktivität

"Um diese Aufgabe gut zu bearbeiten, muss man sich also besonders auf die Mitte konzentrieren und die äußeren Pfeile ignorieren", sagt Markus Ullsperger. "Das ist auf Dauer anstrengend. Hinzu kommt, dass in 50 Prozent der Durchgänge die Flankierreize in die richtige Richtung zeigen, was das Gehirn immer wieder dazu verleitet, die Bearbeitung der Aufgabe vereinfachen zu wollen: Es leitet die Aufmerksamkeit des Probanden daher auf die viel deutlicher erkennbaren Pfeile (sie erscheinen etwas früher als der Zielreiz). Das führt dazu, dass der Proband im Schnitt zwar schneller wird, aber eben auch viel fehleranfälliger", so der Kognitionsforscher.

Bis zu sechs Versuchsdurchgänge vor einem fehlerhaften Durchgang schauten sich die Wissenschaftler an und suchten nach Veränderungen in der Hirnaktivität. Das Ergebnis: Regionen, die bei Ruhe aktiviert werden, zeigten einen graduellen Aktivitätsanstieg, während Netzwerke, die der Aufgabenbearbeitung dienen, graduell weniger Aktivität entwickelten. Die Aktivitätsmuster verschoben sich langsam. "Unsere Interpretation ist, dass sich die Aktivität von einem sehr aufmerksamen, auf genaue Bearbeitung zugeschnittenen Modus hin zu einem eher schnellen, aber weniger konzentrierten Bearbeiten verschiebt", erklärt Ullsperger.

Das ist zunächst eine Anpassung, die zu einer Ökonomisierung der Aufgabenbearbeitung führen kann. Wenn derartige Anpassungsprozesse jedoch über das Ziel hinausschießen, dann werden sie "maladaptiv", d.h. sie entwickeln sich langsam in Fehlanpassungen. "In der Aufgabe muss man ständig ein Gleichgewicht zwischen Genauigkeit und Geschwindigkeit erreichen", sagt Ullsperger. "Dieses Dilemma kann nicht dauerhaft optimal gelöst werden. Bei längerer Bearbeitung lässt die "Konzentration" langsam nach und damit steigt die Fehlerwahrscheinlichkeit an." Unterläuft der Versuchsperson ein Fehler, so wird dieser vom Handlungsüberwachungssystem des Gehirns aufgedeckt, und entsprechende Anpassungen des Verhaltens werden initiiert. Die Daten zeigen, dass dadurch der Ausgangszustand der Hirnaktivität, der vermutlich mit einer besonders konzentrierten Aufgabenbearbeitung verbunden ist, wieder hergestellt wird.

Diese Ergebnisse könnten in der Zukunft helfen, die Sicherheit durch Vorhersage von Fehlern zu erhöhen. Sollen wir uns jetzt Fließbandarbeiter vorstellen ausgestattet mit einer EEG-Haube, die ihre Gehirnströme überwacht? "Vielleicht könnte man so etwas in der Zukunft bauen", so Ullsperger. "Sinnvoll wäre so etwas aber sicher nur bei wirklich monotonen, stark beanspruchenden Tätigkeiten mit hoher Verantwortung." Doch bis dahin muss noch einiges an Grundlagenforschung geleistet werden. So wurden noch keine EEG-Korrelate einer fehleranfälligen Hirnaktivität entdeckt und die Hirnaktivität lässt sich auch noch nicht mit ausreichender Trefferrate in "konzentriert" versus "fehleranfällig" klassifizieren. "Es sollte also nicht der Eindruck entstehen, dass wir kurz vor der Entwicklung eines solchen Fehlerwarners stehen", so der Max-Planck-Forscher.

Originalveröffentlichung:
Tom Eichele, Stefan Debener, Vince D. Calhoun, Karsten Specht, Andreas K. Engel, Kenneth Hugdahl, D. Yves von Cramon, Markus Ullsperger

Prediction of human errors by maladaptive changes in event-related brain networks, PNAS, 22. April 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2008/pressemitteilung200804221/

Weitere Berichte zu: Flankierreiz Hirnaktivität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten