Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krieg der Einzeller: Saarbrücker Forscher entschlüsseln Wirkungsweise von Killerhefen

25.06.2002


Wer bei Hefe nur an knackige Brötchen oder frisches Bier denkt, wird überrascht sein. Hefepilze, dazu gehören die Back- und Brauhefen genauso wie die Schimmelpilze, spielen eine wichtige Rolle in den Stoffkreisläufen der Natur. Viele der einzelligen "Müllschlucker" sind ganz wesentlich daran beteiligt, dass organische Abfälle abgebaut werden. Im täglichen Überlebenskampf greifen die vermeintlich harmlosen Braugehilfen sogar zu "biologischer Kriegsführung". Frank Breinig, wissenschaftlicher Mitarbeiter im Forschungsteam von Professor Dr. Manfred Schmitt, hat nun den Mechanismus entschlüsselt, wie die sogenannten "Killerhefen" wirken: Um unerwünschte Nahrungs-Konkurrenz loszuwerden, bilden diese Hefen Giftstoffe, sogenannte Toxine, die auf ganz unterschiedliche Weise wirken: Entweder das Gift zerstört die Zellmembran des Angreifers, indem es sie regelrecht durchlöchert und die Zelle somit "ausläuft". Eine andere Möglichkeit unerwünschte Nebenbuhler loszuwerden besteht darin, sie an der Zellteilung und so an der Vermehrung zu hindern. Dazu schmuggelt sich das Gift quasi maskiert in den "Verdauungsapparat" der gegnerischen Zelle und von dort weiter ins Zellinnere. Ist es hier erst einmal angelangt, läßt es seine "Maske", ein bestimmtes Eiweißmolekül, fallen und schlüpft in den Zellkern, um dort die Synthese der zelleigenen Erbsubstanz (DNA) zu blockieren und die Zellteilung zu verhindern.

Der Krieg im Reagenzglas hat auch einen ganz praktischen Nebeneffekt: Da die Hefegifte sehr spezifisch wirken, könnten sie möglicherweise auch zur Behandlung von Pilzerkrankungen, sogenannten "Mykosen", eingesetzt werden. Auch der zweite "Trick" der raffinierten Einzeller, die Zellteilung des Gegners zu verhindern, wird zurzeit intensiv untersucht. Dabei geht es Professor Schmitt und seinen Mitarbeitern um die Frage, ob und wenn ja, wie auch Tumorzellen auf diese Art ausgebremst werden können.

Hefen sind zwar einzellige Lebewesen, haben aber dennoch eine ebenso komplexe innere Struktur wie die Zellen "höherer" Organismen. Und genau wie ihre mehrzelligen Verwandten müssen sie sich in einem harten Überlebenskampf behaupten. Allerdings sind nicht alle Hefen zur "biologischen Kriegsführung" befähigt: Meist lassen erst Viren die Hefe zu einem Killer werden. Hierbei programmiert das Virus den genetischen Bauplan der Hefezelle so um, dass diese nun das für Konkurrenten tödliche Virus-Gift produziert, gleichzeitig aber selbst vor diesem geschützt ist. Die Art des Virus bestimmt die Art des Giftes, das die Hefen dann produzieren. So kennt man heute alleine bei der Bäckerhefe bereits drei verschiedene Virustypen, die die Information für die Toxine K1, K2 oder K28 bereitstellen.

Die Forschung an den "Killerhefen" ist noch nicht sehr alt: Erst 1963 wurde die biologische Kriegsführung im Mikrokosmos entdeckt. Prof. Schmitt forscht seit über 15 Jahren an den interessanten und vielversprechenden Giften und beschäftigt mehrere seiner 17 Mitarbeiter mit der molekularen Charakterisierung dieser Hefetoxine.


Ansprechpartner:

Professor Dr. Manfred Schmitt
Tel. 0681-302-4730

Hochschul- Presseteam | idw

Weitere Berichte zu: Einzeller Gift Hefe Virus Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie