Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Netzwerkbildung im Gehirn trotz Sendepause

25.06.2002


Abb.: Eine nicht mehr zur Transmitterfreisetzung fähige Nervenzelle in Kultur; Zellkörper und Fortsätze sind blau fluoreszierend dargestellt. Die elektrophysiologischen Messkurven im oberen Bildteil zeigen die totale Blockade der synaptischen Kommunikation in dieser Zellmutante (Munc13-defizientes Neuron) im Vergleich zu einem normalen Kontrollneuron. Die trotz dieser Blockade zahlreich angelegten Synapsen sind rot fluoreszierend dargestellt.

Abb.: Max-Planck-Institut für biophysikalische Chemie


Max-Planck-Wissenschaftler liefern neue Ergebnisse zur Gehirnentwicklung / Widerspruch zur bisherigen Lehrmeinung


Anhand aktueller Untersuchungen zur Gehirnentwicklung haben Wissenschaftler der Max-Planck-Institute für experimentelle Medizin sowie für biophysikalische Chemie in Göttingen den Nachweis erbringen können, dass sich auch bei kompletter Blockade der Nervenzellkommunikation normal strukturierte Netzwerke im Gehirn bilden. Mit ihrer jüngsten Publikation in der Ausgabe vom 25. Juni 2002 in den Proceedings of the National Academy of Sciences USA haben die Max-Planck-Forscher damit die bisher gängige Lehrmeinung, wonach genau gesteuerte Verschaltungsprozesse nur möglich sind, wenn Nervenzellen aktiv miteinander kommunizieren können, zu Fall gebracht.

Die Informationsverarbeitung im menschlichen Nervensystem erfolgt an spezialisierten Kontaktstellen zwischen sendenden und empfangenden Nervenzellen. Ein exakt organisiertes Netzwerk von etwa 100 Billionen dieser als Synapsen bezeichneten Kontaktstellen sorgt für die Verknüpfung der 100 Milliarden Nervenzellen in unserem Gehirn und ist für die Steuerung sowohl von einfachen Körperfunktionen und Bewegungen als auch von komplizierten Verstandes-, Gefühls- und Gedächtnisleistungen verantwortlich. Bis vor kurzem gingen Hirnforscher davon aus, dass ein normaler Ablauf der Gehirnentwicklung nur möglich ist, wenn Nervenzellen schon in den frühesten Phasen der Entwicklung aktiv miteinander kommunizieren können.


Die Kommunikation an den Synapsen beginnt, wenn eine sendende Nervenzelle durch einlaufende Signale erregt wird und ihrerseits Botenstoffe ausschüttet. Diese als Neurotransmitter bezeichneten Signalmoleküle gelangen dann zur jeweiligen Empfängerzelle und beeinflussen wiederum deren Aktivitätszustand. Um den Einfluss dieser synaptischen Kommunikation auf die Gehirnentwicklung zu untersuchen, haben die Forscherteams um Nils Brose und Christian Rosemund genetisch veränderte Mäuse, also Mutanten, erzeugt, deren Nervenzellen nicht mehr zur Freisetzung von Neurotransmittern fähig sind.

Die Untersuchungen an den Mausmutanten, die ein Modell für die menschliche Gehirnentwicklung darstellen, führten zu einem überraschenden Ergebnis: Zwar herrschte in Folge der eingeführten Mutationen in fast allen Teilen des Gehirns dieser Tiere quasi Sendepause, die komplizierten Verschaltungen zwischen den Nervenzellen entwickelten sich jedoch trotzdem weitgehend normal. "Besonders überraschend war, dass sogar die Struktur einzelner Synapsen und ihre Ausstattung mit den für die Synapsenfunktion wichtigen Proteinen in den Mausmutanten vollkommen normal war", so Nils Brose, Direktor am Max-Planck-Institut für experimentelle Medizin. "Diese Befunde stehen", wie Christian Rosenmund, Forschungsgruppenleiter am Max-Planck-Institut für biophysikalische Chemie ergänzt, "im Widerspruch zu einer großen Zahl von Arbeiten über die Mechanismen der Gehirnentwicklung."

Die Forscher sind sich einig, dass ihr genetisches Modellsystem die bisher klarste Einschätzung der Bedeutung von Nervenzellaktivität für die frühe Entwicklung des Nervensystems von Säugetieren liefert: "Entstehung und Erhalt von Synapsen basieren zunächst auf automatisch ablaufenden zellulären Programmen und erfolgen offensichtlich unabhängig von neuronaler Kommunikation", so Rosenmund. Außer Frage sei dabei allerdings, dass aktive Signalübertragung zwischen Nervenzellen für die exakte Organisation von synaptischen Netzwerken in späteren Phasen der Hirnentwicklung - etwa während der Reifung der für verschiedene Sinneswahrnehmungen verantwortlichen Hirnbereiche - sehr wichtig ist.


Weitere Informationen erhalten Sie von:

Dr. Nils Brose
Abteilung Molekulare Neurobiologie
Max-Planck-Institut für experimentelle Medizin
Tel.: 05 51 - 38 99 - 7 25 (Büro), 38 99 - 7 13 (Labor)
Fax: 05 51 - 38 99 - 7 07
E-Mail: brose@em.mpg.de

Dr. Christian Rosemund
Abteilung Membranbiophysik
Max-Planck-Institut für biophysikalische Chemie
Tel.: 0551 - 201 - 1672
Fax: 0551 - 201 - 1688
E-Mail: crosenm@gwdg.de


| Max-Planck-Gesellschaft

Weitere Berichte zu: Gehirnentwicklung Max-Planck-Institut Nervenzelle Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics