Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein zeigt Improvisationstalent

18.04.2008
Ungewöhnlicher Regulationsmechanismus bei der Ausbildung von Kontaktstellen zwischen Nervenzellen

Statt Funk und Kabel sind bei der Signalübertragung in lebenden Zellen eine Vielzahl von Proteinen beteiligt.


Ein Protein mit zwei Funktionen: Durch einen geschickten Trick kompensiert die CASK-Kinase ihre geringe Aktivität. Ein Teil des Proteins rekrutiert aktiv Neurexin-Proteine und platziert diese in unmittelbare Nähe zur Kinase. Wahl / MPIbpc

Damit Signale richtig weitergeleitet und interpretiert werden, müssen die Aktivitäten dieser Proteine genau aufeinander abgestimmt sein. Für ihre richtige Steuerung sorgt ein ausgeklügeltes Kontrollsystem, in dem so genannte Proteinkinasen eine Schlüsselrolle spielen. Wie ein internationales Wissenschaftlerteam aus Dallas (USA), Göttingen und Hamburg nun herausgefunden hat, ist eine Kinase dabei offensichtlich Meister im Improvisieren.

Während alle bisher bekannten Kinasen nur mit Hilfe von Magnesium funktionieren können, hat die Pseudokinase CASK einen Trick gefunden, mit dem sie auf Magnesium ganz verzichten kann. Während der frühen Entwicklung des Nervensystems scheint sie direkt an der Ausbildung von Kontaktstellen zwischen Nervenzellen - den Synapsen - beteiligt zu sein. Pseudokinasen wie CASK galten bisher als inaktiv. Zumindest einige von ihnen dürften in der Vergangenheit zu Unrecht als nutzlos abgestempelt worden sein. (Cell, Vol. 133, 18. April 2008).

... mehr zu:
»CASK »Kinase »Nervenzelle »Protein »Pseudokinase

Was tun, wenn? Nicht nur wir Menschen müssen uns ständig auf neue Situationen in unserer Umgebung einstellen und darauf reagieren.

Auch lebende Zellen empfangen eine Vielzahl von Signalen, die sie richtig weiterleiten und verarbeiten müssen. Häufig werden die Zellen angeregt, zu wachsen oder sich zu teilen, einen Entwicklungsprozess zu starten oder eine Immunantwort auszulösen. Dazu müssen zahlreiche Akteure innerhalb der Zelle - die Proteine - genau aufeinander abgestimmt zusammenarbeiten. Dass sie zur richtigen Zeit und am richtigen Ort funktionieren, dafür sorgt ein komplexes Steuerungssystem. Dabei übernehmen Proteinkinasen einen entscheidenden Part. Bis zu knapp 500 verschiedene Kinasen gibt es in einer Zelle, die jeweils bestimmte Proteine regulieren. Sie aktivieren oder hemmen Proteine, lotsen sie an bestimmte Orte in der Zelle oder blockieren ihre Wechselwirkung mit anderen Zellmolekülen. Die entsprechenden Anweisungen übermitteln Kinasen, indem sie Proteinen einen Phosphatrest anheften.

Der zugrundeliegende Reaktionsmechanismus scheint dabei bei allen Kinasen der gleiche zu sein. Mit Hilfe von Magnesium binden Kinasen ein ATP-Molekül und spalten davon einen Phosphatrest ab, den sie nachfolgend auf Proteine übertragen. Einigen wenigen Kinasen fehlt jedoch die Fähigkeit, das für die Reaktion notwendige Magnesium zu binden. Als so genannte Pseudokinasen wurden sie bisher wenig beachtet. Völlig zu unrecht, wie nun ein internationales Wissenschaftler-Team von der University of Texas (Dallas, USA), des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) und des Deutschen Elektronen Synchrotrons (Hamburg) zeigt.

Die Wissenschaftler fanden heraus, dass in der frühen Entwicklung des Nervensystems auch eine Pseudokinase aktiv zu sein scheint: das CASK-Protein. Die Pseudokinase wechselwirkt direkt mit dem Protein Neurexin, das für die Ausbildung der Synapsen zwischen Nervenzellen wichtig ist. Entfernt man bei Mäusen die CASK-Kinase, so sterben die Tiere bereits kurz nach der Geburt. Menschen bleiben ohne CASK in ihrer geistigen Entwicklung deutlich zurück und ihre Sehfähigkeit verkümmert. "Allerdings kann CASK kein Magnesium binden und ohne Magnesium funktionieren Kinasen nicht. Das passte für uns einfach nicht zusammen" erläutert Neurobiologe Konark Mukherjee, einer der Projektleiter. Daher bildeten die Forscher die Reaktion Schritt für Schritt im Reagenzglas nach. Dabei übertrug CASK ganz ohne Magnesium Phosphatreste auf Neurexin. Zugabe von Magnesium blockierte die Kinase sogar. Doch funktioniert die Pseudokinase auch in der Zelle? Tatsächlich konnten Mukherjee und seine Forscherkollegen die gleiche Kinase-Reaktion auch in lebenden Nervenzellen von Ratten nachweisen. Dass das Protein bei seinem Reaktionsmechanismus derart "improvisiert", hat biologisch durchaus seinen Sinn. "Zum Zeitpunkt der Synapsenbildung ist in der Nervenzelle nahezu kein Magnesium vorhanden. Magnesiumabhängige Kinasen wären unter diesen Bedingungen schlicht nicht funktionsfähig", sagt Mukherjee.

Ein Protein - zwei Funktionen
Die spannende Frage für die Wissenschaftler ist nun, wie eine Kinase auch ohne Magnesium funktionieren kann. Um diesen Mechanismus besser zu verstehen, arbeiteten Neurobiologen eng mit Strukturbiologen zusammen. Mit Hilfe der Röntgenkristallographie gelang es den Wissenschaftlern, die Struktur der CASK aufzuklären. "Anders als magnesiumabhängige Kinasen ist CASK praktisch ständig aktiv. Allerdings ist sie im Vergleich zu magnesiumabhängigen Kinasen sehr viel langsamer", fasst Markus Wahl vom Max-Planck-Institut für biophysikalische Chemie die neuen Erkenntnisse zusammen. Die geringe Aktivität kompensiert das Protein zumindest teilweise durch einen geschickten Trick: Neben der Kinase besitzt das Protein eine weitere Untereinheit, die aktiv Neurexin-Proteine rekrutiert und damit der Pseudokinase direkt zuarbeitet. "So kann die Kinase längere Zeit mit Neurexin-Proteinen wechselwirken und sie mit Phosphat versehen, obwohl sie langsam ist", erklärt Markus Wahl. Die Ergebnisse zeigen, dass der Reaktionsmechanismus von Kinasen facettenreicher ist als bisher angenommen. Auch andere Pseudokinasen, denen typische Eigenschaften von Kinasen fehlen, könnten sich zukünftig als "Spezialisten" entpuppen, die dort aktiv sind, wo normale Kinasen ihren Dienst versagen.
Kontakt:
Dr. Markus Wahl,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1046,
Fax +49 551 201-1197,
E-Mail: mwahl@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1304,
Fax +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/wahl/
http://www.utsouthwestern.edu/utsw/cda/dept120915/files/144559.html
http://www.mpibpc.mpg.de/

Weitere Berichte zu: CASK Kinase Nervenzelle Protein Pseudokinase

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics