Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein zeigt Improvisationstalent

18.04.2008
Ungewöhnlicher Regulationsmechanismus bei der Ausbildung von Kontaktstellen zwischen Nervenzellen

Statt Funk und Kabel sind bei der Signalübertragung in lebenden Zellen eine Vielzahl von Proteinen beteiligt.


Ein Protein mit zwei Funktionen: Durch einen geschickten Trick kompensiert die CASK-Kinase ihre geringe Aktivität. Ein Teil des Proteins rekrutiert aktiv Neurexin-Proteine und platziert diese in unmittelbare Nähe zur Kinase. Wahl / MPIbpc

Damit Signale richtig weitergeleitet und interpretiert werden, müssen die Aktivitäten dieser Proteine genau aufeinander abgestimmt sein. Für ihre richtige Steuerung sorgt ein ausgeklügeltes Kontrollsystem, in dem so genannte Proteinkinasen eine Schlüsselrolle spielen. Wie ein internationales Wissenschaftlerteam aus Dallas (USA), Göttingen und Hamburg nun herausgefunden hat, ist eine Kinase dabei offensichtlich Meister im Improvisieren.

Während alle bisher bekannten Kinasen nur mit Hilfe von Magnesium funktionieren können, hat die Pseudokinase CASK einen Trick gefunden, mit dem sie auf Magnesium ganz verzichten kann. Während der frühen Entwicklung des Nervensystems scheint sie direkt an der Ausbildung von Kontaktstellen zwischen Nervenzellen - den Synapsen - beteiligt zu sein. Pseudokinasen wie CASK galten bisher als inaktiv. Zumindest einige von ihnen dürften in der Vergangenheit zu Unrecht als nutzlos abgestempelt worden sein. (Cell, Vol. 133, 18. April 2008).

... mehr zu:
»CASK »Kinase »Nervenzelle »Protein »Pseudokinase

Was tun, wenn? Nicht nur wir Menschen müssen uns ständig auf neue Situationen in unserer Umgebung einstellen und darauf reagieren.

Auch lebende Zellen empfangen eine Vielzahl von Signalen, die sie richtig weiterleiten und verarbeiten müssen. Häufig werden die Zellen angeregt, zu wachsen oder sich zu teilen, einen Entwicklungsprozess zu starten oder eine Immunantwort auszulösen. Dazu müssen zahlreiche Akteure innerhalb der Zelle - die Proteine - genau aufeinander abgestimmt zusammenarbeiten. Dass sie zur richtigen Zeit und am richtigen Ort funktionieren, dafür sorgt ein komplexes Steuerungssystem. Dabei übernehmen Proteinkinasen einen entscheidenden Part. Bis zu knapp 500 verschiedene Kinasen gibt es in einer Zelle, die jeweils bestimmte Proteine regulieren. Sie aktivieren oder hemmen Proteine, lotsen sie an bestimmte Orte in der Zelle oder blockieren ihre Wechselwirkung mit anderen Zellmolekülen. Die entsprechenden Anweisungen übermitteln Kinasen, indem sie Proteinen einen Phosphatrest anheften.

Der zugrundeliegende Reaktionsmechanismus scheint dabei bei allen Kinasen der gleiche zu sein. Mit Hilfe von Magnesium binden Kinasen ein ATP-Molekül und spalten davon einen Phosphatrest ab, den sie nachfolgend auf Proteine übertragen. Einigen wenigen Kinasen fehlt jedoch die Fähigkeit, das für die Reaktion notwendige Magnesium zu binden. Als so genannte Pseudokinasen wurden sie bisher wenig beachtet. Völlig zu unrecht, wie nun ein internationales Wissenschaftler-Team von der University of Texas (Dallas, USA), des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) und des Deutschen Elektronen Synchrotrons (Hamburg) zeigt.

Die Wissenschaftler fanden heraus, dass in der frühen Entwicklung des Nervensystems auch eine Pseudokinase aktiv zu sein scheint: das CASK-Protein. Die Pseudokinase wechselwirkt direkt mit dem Protein Neurexin, das für die Ausbildung der Synapsen zwischen Nervenzellen wichtig ist. Entfernt man bei Mäusen die CASK-Kinase, so sterben die Tiere bereits kurz nach der Geburt. Menschen bleiben ohne CASK in ihrer geistigen Entwicklung deutlich zurück und ihre Sehfähigkeit verkümmert. "Allerdings kann CASK kein Magnesium binden und ohne Magnesium funktionieren Kinasen nicht. Das passte für uns einfach nicht zusammen" erläutert Neurobiologe Konark Mukherjee, einer der Projektleiter. Daher bildeten die Forscher die Reaktion Schritt für Schritt im Reagenzglas nach. Dabei übertrug CASK ganz ohne Magnesium Phosphatreste auf Neurexin. Zugabe von Magnesium blockierte die Kinase sogar. Doch funktioniert die Pseudokinase auch in der Zelle? Tatsächlich konnten Mukherjee und seine Forscherkollegen die gleiche Kinase-Reaktion auch in lebenden Nervenzellen von Ratten nachweisen. Dass das Protein bei seinem Reaktionsmechanismus derart "improvisiert", hat biologisch durchaus seinen Sinn. "Zum Zeitpunkt der Synapsenbildung ist in der Nervenzelle nahezu kein Magnesium vorhanden. Magnesiumabhängige Kinasen wären unter diesen Bedingungen schlicht nicht funktionsfähig", sagt Mukherjee.

Ein Protein - zwei Funktionen
Die spannende Frage für die Wissenschaftler ist nun, wie eine Kinase auch ohne Magnesium funktionieren kann. Um diesen Mechanismus besser zu verstehen, arbeiteten Neurobiologen eng mit Strukturbiologen zusammen. Mit Hilfe der Röntgenkristallographie gelang es den Wissenschaftlern, die Struktur der CASK aufzuklären. "Anders als magnesiumabhängige Kinasen ist CASK praktisch ständig aktiv. Allerdings ist sie im Vergleich zu magnesiumabhängigen Kinasen sehr viel langsamer", fasst Markus Wahl vom Max-Planck-Institut für biophysikalische Chemie die neuen Erkenntnisse zusammen. Die geringe Aktivität kompensiert das Protein zumindest teilweise durch einen geschickten Trick: Neben der Kinase besitzt das Protein eine weitere Untereinheit, die aktiv Neurexin-Proteine rekrutiert und damit der Pseudokinase direkt zuarbeitet. "So kann die Kinase längere Zeit mit Neurexin-Proteinen wechselwirken und sie mit Phosphat versehen, obwohl sie langsam ist", erklärt Markus Wahl. Die Ergebnisse zeigen, dass der Reaktionsmechanismus von Kinasen facettenreicher ist als bisher angenommen. Auch andere Pseudokinasen, denen typische Eigenschaften von Kinasen fehlen, könnten sich zukünftig als "Spezialisten" entpuppen, die dort aktiv sind, wo normale Kinasen ihren Dienst versagen.
Kontakt:
Dr. Markus Wahl,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1046,
Fax +49 551 201-1197,
E-Mail: mwahl@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1304,
Fax +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Dr. Carmen Rotte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/wahl/
http://www.utsouthwestern.edu/utsw/cda/dept120915/files/144559.html
http://www.mpibpc.mpg.de/

Weitere Berichte zu: CASK Kinase Nervenzelle Protein Pseudokinase

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften