Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioniker entwickeln TBT-freie Beschichtung gegen organischen Bewuchs und innoWi findet Partner für Vermarktung

16.04.2008
Giftfreie Beschichtung schützt auch Schiffsrümpfe gegen Seepocke, Miesmuschel & Co.

Erfolg für Bremer Hochschul-Team und für innoWi: Bioniker entwickeln TBT-freie Beschichtung gegen organischen Bewuchs und innoWi findet Partner für Vermarktung

Die Römer verwendeten Bleiplatten, später setzte man Kupferplatten ein, und seit dem 20. Jahrhundert werden Schiffsrümpfe und Unterwasserkörper wie Plattformen mit giftigen Anstrichen gegen den Bewuchs von Algen und Meerestieren geschützt. Die Schiffslacke enthalten zumeist das hochtoxische Tributylzinn (TBT), dessen Einsatz nun weltweit verboten ist.

Eine sehr wirksame und vor allem ungiftige Alternative zu der umweltschädlichen Chemikalie kommt nun aus dem Bionik-Forschungslabor der Hochschule Bremen: Prof. Dr. Antonia Kesel und ihr Team setzen auf einen mechanischen Schutz - nach dem Vorbild der Hai-Haut. Problemlos mit dem Pinsel lässt sich die Beschichtung auftragen. Vorgestellt wird sie nun auf der Hannover Messe vom 21. bis 25. April (Halle 2, Stand D46).

... mehr zu:
»Dentikel »Seepocke

Bei ihrem Weg auf den Markt wird die neue Entwicklung von der innoWi GmbH betreut. Im vergangenen Jahr wurde die Innovation zum Patent angemeldet, und mit der Vosschemie GmbH in Uetersen bei Hamburg hat das Gemeinschaftsunternehmen der Bremer Hochschulen und der Bremer Investitions-Gesellschaft mbH (BIG) auch schon einen Lizenznehmer gefunden. Alsbald soll das neue Produkt auf den Markt kommen. Schon jetzt zeichne sich ab, dass es ein Erfolg werde, sagt Diplombiologin und Innovationsmanagerin Birgit Funk von der innoWi GmbH. "Chemiekonzerne, Hersteller von Lacken, Farben, Folien oder Oberflächenbeschichtungen suchen hier schon lange nach Lösungen. Unsere Untersuchungen zeigen, dass der Bedarf an einer die Umwelt schonenden Antifouling-Beschichtung riesengroß ist. Zudem lässt sie sich so einfach auftragen wie ein normaler Lack."

"Fouling" oder "Biofouling" heißt die unerwünschte Anlagerung von Seepocke, Miesmuschel & Co, die besonders in der Seefahrt große Probleme bereitet. Durch sie werden die Schiffe schwerer, der Strömungswiderstand nimmt zu, und damit steigt der Treibstoffverbrauch erheblich. Der bisher wirksamste und gängigste Zusatz in Antifouling-Anstrichen ist das Schwermetall TBT. Durch die Nahrungskette kann es in den menschlichen oder tierischen Organismus gelangen und dort zu hormonellen Störungen führen - bis hin zur Unfruchtbarkeit. Das zeigt sich besonders in Meeresgebieten mit hohem Schifffahrtsaufkommen. Durch das TBT sind dort inzwischen einige Arten vom Aussterben bedroht. Daher hat die Internationale Seeschifffahrts-Organisation (IMO) 2003 ein erstes Verbot für TBT-haltige Antifouling-Farben ausgesprochen, seit 2008 gilt ein vollständiges Gebrauchsverbot, und auch die Reste dieser giftigen Anstriche müssen nun beseitigt werden. Auch die ersatzweise eingeführten, ebenfalls giftigen Kupfer- und Kupferoxidverbindungen als zusätzlicher Wirkstoff in Unterwasseranstrichen gegen den Bewuchs sind bereits für einige Binnengewässer in verboten.

Die Lösung lag am Strand: Nur ein kleiner Katzenhai war nicht befallen

Während eines Kurzurlaubes in der Bretagne kam die Idee, bei einem kleinen Strandspaziergang: Zwischen Plastikflaschen und sonstigem Müll entdeckte Prof. Dr. Antonia Kesel einen kleinen, verendeten Katzenhai, und die Bremer Biologin fragte sich, warum alles Strandgut außer dem Hai von Seepocken überwuchert war. Selbst an sehr glatten Oberflächen haften die kleinen Krebse bombenfest und können auch durch massive mechanische Belastung nicht gelöst werden. Zurück in Bremen ging die Biologin dem Phänomen nach. Von der Bio-Station Helgoland besorgte sie sich einen kleinen Katzenhai, der dort tot geborgen worden war, und begann, dessen Haut zu untersuchen: Was ist das Besondere daran? Warum wird sie, anders als zum Beispiel die Haut von Walen, nicht durch Parasiten befallen?

"Schon durch die Lupe kann man es sehen", sagt Antonia Kesel. "Wo andere Fische Schuppen haben, hat der Hai auf seiner Haut kleine Zähnchen - aus Dentin, dem härtesten Material, das bei Lebewesen vorkommt", beschreibt sie ihre Beobachtungen. Mit einer Art Stiel seien diese ungefähr einen halben Millimeter großen, so genannten Dentikel jeweils einzeln und flexibel in der Unterhaut des Hais eingelagert. Die einzelnen Zähnchen seien gegeneinander beweglich und bildeten so einen elastischen Schutzschild. Seit mehr als 200 Millionen Jahren schütze sich der Überlebenskünstler auf diese Weise, sagt Kesel.

Wegen der "Einzelaufhängung" der Dentikel sei die Oberfläche sehr elastisch. Eine weitere Besonderheit: "Die Oberfläche der Dentikel ist nicht glatt, sondern sie haben jeweils mehrere kleine, in Strömungsrichtung verlaufende Rillen", erklärt Kesel. So können sich zum Beispiel zwar kurzfristig kleine Seepockenlarven anhaften, aber sobald sie größer werden, verlieren sie den Halt. Zum einen wegen der Rillen, und zum anderen wegen der Flexibilität des Untergrundes. Seepocken erreichen einen Durchmesser von bis zu 1,5 Zentimetern. Spätestens wenn sie über die Größe eines Dentikels hinaus wachsen, fallen sie ab.

Mechanischer Schutz statt chemischer Keule

Die wichtigsten Merkmale des natürlichen Vorbildes sind die regelmäßige, lamellenartige Mikrostrukturierung, die niedrige Oberflächenenergie und die hohe Elastizität. Ziel der Bionikerin war es, diesen mechanischen Schutzschild mit modernen, ungiftigen Werkstoffen nachzubilden und die Eigenschaften zu übertragen. Es galt, geeignete Materialien und ein praktikables Herstellungsverfahren zu finden sowie die Produktionszeit und -kosten möglichst gering zu halten. "Die wesentliche Frage war: Wie weit kann ich diese komplexe Struktur vereinfachen und dabei noch die ihre Wirkung erhalten? Bei aller Reduzierung musste das Prinzip noch greifen", berichtet die Wissenschaftlerin. Die Kunst lag im Abstrahieren.

Während der mehrjährigen Entwicklungsphase arbeiteten Kesel und ihr Team unter anderem mit Werkstoffwissenschaftlern, Physikern, Maschinenbauern und Strömungsmechanikern zusammen. Mit "bestimmten Silikonmaterialien", so ihre Forschungen, konnte eine Oberflächenstruktur nach dem Vorbild der Haihaut hergestellt werden, und es folgten zahlreiche Studien des Siedlungsverhaltens der Seepocke an einer künstlichen Haut. Unter Realbedingungen wurde sie auf Testpanels an Schiffsrümpfen erprobt, zunächst in der Nordsee, dann auch im Mittelmeer. Das Ergebnis: Die Beschichtung auf den Testplatten reduzierte den Bewuchs um 70 Prozent.

Die Antifouling-Wirksamkeit beruht alleine auf den physikalischen Eigenschaften des Materials. "Sie amortisiert sich schnell, da Wiederholungsanstriche seltener nötig sind", sagt Kesel, und im Vergleich zu anderen nicht-toxischen Beschichtungen wie zum Beispiel Teflon weise sie eine längere Beständigkeit auf. Die innoWi ist von dem Erfolg des neuen Produktes überzeugt: Es sei ungiftig, sehr leicht zu handhaben und dabei auch wirtschaftlich, sagt Birgit Funk. "Auf die chemische Keule können wir verzichten. Es geht auch ohne Schwermetallablagerungen in den Sedimenten der Meere durch giftige Schiffsanstriche", freut sich die Biologin.

Von Bierbrauer bis Papierhersteller - auch für nicht-maritime Anwendungen interessant

An Schiffsrümpfen, Plattformen und Bojen bereitet der organische Bewuchs große Probleme und auch an Sensorsystemen für Forschungs- oder Überwachungszwecke im maritimen Bereich. Oft sind sie nach kurzer Zeit so bewachsen, dass sie ausgetauscht werden müssen. Seit langem sucht man hier nach wirksamen, die Umwelt schonenden Antifouling-Strategien. Aber auch für Anwendungen auf dem Festland ist die neue Entwicklung interessant. So sind zum Beispiel auch Rohrzuleitungen von Wärmetauschern und industriellen Kühlsystemen, die aus Seen und Flüssen mit Wasser gespeist werden, vom Fouling betroffen. Unerwünschte Bio-Filme bilden sich auch in den Rohrleitungssystemen in der Papier verarbeitenden Industrie oder in der Lebensmitteltechnologie. Hier kämpfen unter anderem Molkereien und Brauereien mit organischen Anhaftungen. Die Reinigungsprozesse sind nicht nur aufwändig, sondern bedürfen auch toxischer Substanzen und einer anschließenden Neutralisierung der Leitungen. Die neue Beschichtung würde zu erheblichen Erleichterungen führen und den Einsatz schädlicher Chemikalien reduzieren.

Vosschemie

Die Vosschemie GmbH hat ihren Hauptsitz in Uetersen bei Hamburg und beschäftigt 180 Mitarbeiterinnen und Mitarbeiter. Über ihre Niederlassungen und knapp 60 Partner vermarktet sie weltweit rund 1.500 Produkte. Dabei agiert das Unternehmen einerseits als Handelspartner für Industrie, Handwerk und Fachhandel, andererseits hat es sich als Hersteller moderner Werkstoffe auf dem Gebiet der kalthärtenden Kunststoffe einen Namen gemacht. Vosschemie gilt eigenen Angaben zufolge als führender Hersteller hochwertigster Polyester-Spachtelmassen. 2001 vereinte Vosschemie das Produkt-Sortiment für die Bootsreparatur und -Instandhaltung unter dem Markennamen Yachtcare. Zur Ergänzung des eigenen Sortiments arbeitet das Unternehmen auch hier mit internationalen Herstellern zusammen. Mit der Entwicklung aus dem Bremer Forschungslabor will das Unternehmen nun sein Angebot bereichern: Die Lizenzverträge wurden in diesen Tagen unterschrieben. Die Produktion beginnt in diesem Jahr, ebenso wie der weltweite Vertrieb.

(Text: Sabine Nollmann)

Weitere Informationen:

Dipl.-Biol. Birgit Funk (innoWi GmbH)
Telefon: 0421 96 00-714, E-Mail: birgit.funk@innowi.de
Prof. Dr. Antonia B. Kesel (Hochschule Bremen, Fachrichtung Bionik)
Telefon: 0421 59 05-25 25, E-Mail: info-bionik@hs-bremen.de
Andreas Woyda (Anwendungstechnik, Vosschemie GmbH)
Telefon: 04122 717-0, E-Mail: a.woyda@vosschemie.de

Ulrich Berlin | idw
Weitere Informationen:
http://www.innowi.de
http://www.bionik.hs-bremen.de
http://www.vosschemie.de

Weitere Berichte zu: Dentikel Seepocke

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften