Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung von Nervenfasern wichtig für Muskelsteuerung

11.04.2008
Forscher am European Neuroscience Institute Göttingen finden Details zur Spezialisierung von Nervenfasern, die Bewegungsabläufe koordinieren. Die Ergebnisse erscheinen am 11. April 2008 in der Printausgabe der Zeitschrift "Science".

Gehen, Schwimmen oder Klavierspielen - jede Art von Bewegungsablauf ist nur möglich, wenn die Muskeln die richtigen Impulse ('motorische' Befehle) bekommen. Hoch spezialisierte Nervenbahnen steuern die Bewegung, indem sie die Muskulatur direkt mit dem Nervensystem verbinden.

Damit eine Bewegung wie "Laufen" koordiniert gesteuert ablaufen kann, müssen motorische "Befehle" und sensorische "Eindrücke" (Rückmeldung, in welchem Zustand der Muskel sich befindet) innerhalb der Nervenbahnen streng getrennt erfolgen. Die Göttinger DFG Emmy Noether Forschergruppe um Dr. Till Marquardt, Leiter der Forschungsgruppe Entwicklungsneurobiologie am European Neuroscience Institute (ENI-G) Göttingen hat jetzt herausgefunden, wie es zu der getrennten Ausbildung von motorischen und sensorischen Nervenfasern kommt. Die Arbeiten erfolgten in Zusammenarbeit mit den Arbeitsgruppen von Prof. Sam Pfaff und Prof. Greg Lemke am Salk Institute, San Diego (USA). Die Ergebnisse wurden am 11. April 2008 in der Print-Ausgabe des renommierten Wissenschaftsmagazins "Science" veröffentlicht.

Originalveröffentlichung: Gallarda, B., Bonanomi, D., Müller, D., Brown, A., Alaynick, W.A., Lemke, G., Pfaff, S.L. and Marquardt, T. Segregation of axial sensory and motor pathways through heterotypic trans-axonal signaling. Science 321 (April 11) 2008.

Die neuen Kenntnisse aus der Grundlagenforschung über die Signalmechanismen zwischen motorischen und sensorischen Nervenfasern könnten für die Entwicklung von Therapien bei Verletzungen von Nervenbahnen von Bedeutung sein. So genannte "Motorfasern" leiten die Nervenimpulse an die Muskulatur. "Sensorische Fasern" sind dafür zuständig, Sinnesinformationen wie Schmerz oder Temperatur von Muskulatur, Bindegewebe und Haut an das zentrale Nervensystem zu leiten. Wie wichtig dieses ausgeklügeltes Zusammenspiel ist, zeigt sich, wenn eine Verletzung die Nervenbahnen vermischt. Die Folgen sind chronische Schmerzen und auch die Fähigkeit sich zu bewegen ist schwer eingeschränkt.

Motorische und sensorische Fasern wachsen während der Embryonalentwicklung zunächst gemeinsam aus. Wie kommt es dann zur Trennung der verschiedenen Nervenfasertypen und der so wichtigen Spezialisierung? "Wir haben zunächst das Wachstum von Nerven in der Kulturschale untersucht", sagt Dr. Till Marquardt. Ein neu entwickeltes Verfahren ermöglichte es den Forschern, motorische und sensorische Fasern voneinander zu unterscheiden und ihr Wachstum unter dem Mikroskop zu verfolgen. Dabei konnten die Forscher beobachten, wie sich die isolierten Nervenfasern spontan in streng getrennte Nervenbahnen verschiedener Typen aufteilten. Dieses Verhalten hatten sie vorher genau so in Versuchstieren beobachtet.

"Die Trennung in sensorische und in motorische Fasertypen beruht auf einer gegenseitigen Abstoßung", sagt Till Marquardt. Vermittelt wird die gegenseitige Abstoßung durch das Zusammenspiel zweier Eiweißmoleküle, die jeweils auf der Oberfläche der motorischen und sensorischen Fasern liegen. Das Eiweißmolekül auf den sensorischen Fasern (ephrin-A) funktioniert dabei als Abstoßungs-Signal. Es wirkt wiederum direkt auf spezifische Eiweißmoleküle (EphA-Rezeptoren) auf den motorischen Fasern.

Der Gegentest brachte den Forschern weitere Erkenntnisse: Das gezielte Entfernen der EphA-Rezeptoren führte zu einem 'Kurzschluss' im Nervenschaltkreis: Motorfa-sern wuchsen nicht wie normalerweise zur Muskulatur. Stattdessen wuchsen sie in die sensorischen Bahnen und sendeten ihre Nervenimpulse somit an die falsche Stelle. "Die aktive gegenseitige Abstoßung von motorischen und sensorischen Nervenfasern während ihres Wachstums zur Muskulatur ist also von essenzieller Bedeutung für den Aufbau der Nervenschaltkreise, die Bewegungsabläufe steuern", sagt Till Marquardt.

ENI Arbeitsgruppe Entwicklungsneurobiologie. Koordinierte Bewegungen erfordern die präzise Verschaltung von Motoneuronen und sensorischen Neuronen mit der Skelettmuskulatur. Ziel der Forschungsgruppe ist es, zu verstehen, wie die Verbindungen zwischen motorischen und sensorischen Neuronen im Verlauf der Embryonalentwicklung ausgebildet und schließlich zu funktionsfähigen Schaltkreisen verknüpft werden. Die Arbeiten der Forschergruppe werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy Noether Programms gefördert.

Das European Neurosciences Institute Göttingen (ENI-G) besteht seit Juni 2003 und beherbergt derzeit sechs Forschungsgruppen. Sie werden durch die Universitätsmedizin Göttingen, Georg-August-Universität, und die Max-Planck-Gesellschaft gefördert. Ziel ist die Förderung talentierter Nachwuchswissenchaftler auf ihrem Weg zu eigenständiger Forschung.

WEITERE INFORMATIONEN:
European Neuroscience Institute Göttingen (ENI-G), Grisebachstr. 5, 37077 Göttingen
Dr. Till Marquardt, Leiter der Arbeitsgruppe Entwicklungsneurobiologie,
Telefon: 0551 39-13400, tmarqua@gwdg.de,

Stefan Weller | idw
Weitere Informationen:
http://wwwuser.gwdg.de/~tmarqua/

Weitere Berichte zu: Eiweißmolekül Faser Nervenbahn Nervenfaser

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

nachricht CO2-neutraler Wasserstoff aus Biomasse
22.06.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie