Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Pflanzenschädling zum Krebsmedikament

10.04.2008
Auf den Blättern von Pflanzen leben Bakterien, welche die ungewöhnliche Substanz Syringolin A bilden. Sie hat eine ähnliche Molekülstruktur wie der potente Antikrebs-Wirkstoff Glidobactin A

Wenn Pflanzen plötzlich braune Flecken bekommen, werden ihre Blätter häufig mit Bakterien der Gattung Pseudomonas syringae besiedelt. Wie diese Mikroben die Pflanzen schädigen, war bisher unbekannt. Markus Kaiser vom Chemical Genomics Centre der Max-Planck-Gesellschaft in Dortmund ist zusammen mit einem internationalen Team von Wissenschaftlern dieser Frage nachgegangen. Er und seine Kollegen haben dabei verblüffende Erkenntnisse gewonnen: Denn die Substanz, die diese Bakterien abgeben, Syringolin A, weist nicht nur eine ähnliche Struktur wie der potente Antikrebs-Wirkstoff Glidobactin A auf, sie wirkt auch so. (Nature, 10. April 2008)


Kristallstruktur von Syringolin A im Komplex mit dem 20S-Proteasom. Bild: Michael Groll/ TU München

Der von den Bakterien abgegebene Stoff Syringolin A ruft die braunen Flecken auf den Blättern hervor, indem er das pflanzliche Immunsystem zur Abwehr von Krankheitserregern beeinträchtigt. Doch wie funktioniert dies konkret? Mithilfe modernster Methoden wie der Röntgenstrukturanalyse konnten Max-Planck-Forscher sowie Wissenschaftler an der TU München, der Universität Zürich, der Universität Duisburg-Essen, der Universität Cardiff und US-amerikanischer Universitäten auf Hawaii und in Kalifornien zeigen, was genau auf zellulärer Ebene passiert: Syringolin A legt die Müllabfuhr in den Blattzellen lahm, indem es das 20S Proteasom der Pflanzen hemmt.

Das Proteasom ist einerseits eine Art "Entsorgungsanlage", die fehlerhafte Proteine in der Zelle abbaut. Andererseits spielt es eine wesentliche Rolle bei der Regulation zahlreicher Zellprozesse, die für das Überleben von höheren Organismen wie Pflanzen und Tieren unerlässlich sind. Durch die Hemmung des Proteasoms werden die Abwehrmechanismen der Pflanze teilweise unterdrückt, wodurch sich die Bakterien in der Pflanze ungehindert vermehren können. Für die Aufklärung der verschiedenen molekularen Komponenten dieses Entsorgungsmechanismus, der neben vielen anderen Prozessen auch essentiell für eine erfolgreiche Abwehr von Pathogenen ist, erhielten die israelischen Wissenschaftler Aaron Ciechanover, Avram Hershko und der US-Amerikaner Irwin Rose 2004 den Nobelpreis für Chemie.

... mehr zu:
»Krebsmedikament »Proteasom

Als die Max-Planck-Forscher den Pflanzenschadstoff Syringolin A genauer unter die Lupe nahmen, fiel ihnen auf, dass er eine ähnliche Molekülstruktur hat wie eine andere - ebenfalls von Mikroorganismen produzierte - Substanz namens Glidobactin A. Diese wiederum gilt seit den 80er-Jahren als potenter Antikrebswirkstoff, dessen Wirkungsmechanismus jedoch bislang unklar war. Dieser wichtige Befund brachte die Wissenschaftler auf die Spur, dass beide Verbindungen zu einer neuen Substanzklasse von potentiellen Krebsmedikamenten, den Syrbactinen, gehören. Denn anschließende Untersuchungen konnten zeigen, dass Syrbactine nicht nur die Abfallentsorgung von pflanzlichen Zellen hemmen, sondern auch die regulierte Abfallentsorgung menschlicher Zellen. "Unserem Forscherteam gelang nun der Nachweis, dass auch Glidobactin A ähnlich wie Syringolin A die Müllentsorgung in menschlichen Zellen behindert", so Markus Kaiser.

Durch Kristallstrukturanalyse des Komplexes mit dem Proteasom, dessen Molekülstruktur und -funktion von Michael Groll und Robert Huber am Max-Planck-Institut für Biochemie in Martinsried vor mehr als zehn Jahren entschlüsselt worden war, konnte der molekulare Wirkmechanismus der Syrbactine aufgeklärt werden. Diese binden an das eigentliche "Herz" der zellulären Müllentsorgung, dem katalytischen Zentrum des 20S Proteasoms, wodurch dieses irreversibel ausgeschaltet wird. Und nicht nur das: "Diese Substanzen wirken offensichtlich besonders toxisch auf schnell wachsende Tumorzellen wie die des multiplen Myeloms und haben ein großes Potential als moderne Krebsmedikamente zum Einsatz zu kommen", meint Markus Kaiser.

Der Dortmunder Wissenschaftler beschäftigt sich nun in seinem Labor mit der Entwicklung und Herstellung neuer Wirkstoffe auf Basis der Syrbactine. Hierzu werden in der bestehenden Wissenschaftlerallianz zurzeit verschiedenste Verfahren zur chemischen Produktion dieser komplexen Verbindungen entwickelt. In einem nächsten Schritt sollen die Syrbactine in Krebs-Testsystemen wie zum Beispiel den Neuroblastoma-Tumor-Mausmodellen getestet werden.

Originalveröffentlichung:

Michael Groll, Barbara Schellenberg, Andre´ S. Bachmann, Crystal R. Archer, Robert Huber, Tracy K. Powell, Steven Lindow, Markus Kaiser & Robert Dudler
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism

Nature, 10. April 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Krebsmedikament Proteasom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie