Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami der Eiweißstoffe: TUM-Wissenschaftler bestimmen Naturkonstante der Proteinfaltung

09.04.2008
Innerhalb welcher Grenzen von Temperatur und Druck Proteine stabil sind, haben Biochemiker und Biophysiker des Wissenschaftszentrums Weihenstephan der Technischen Universität München (TUM) systematisch bestimmt und dadurch erstmals eine "Naturkonstante" der Proteinfaltung ermittelt.

Ähnlich wie die Elementarladung oder das Planck'sche Wirkungsquantum in der Physik wird die dabei entdeckte Gesetzmäßigkeit in den Biowissenschaften helfen, die dreidimensionale Struktur und Stabilität von Eiweißstoffen zu verstehen und vorherzusagen (Veröffentlichung am 15. April 2008 in den Proceedings of the National Academy of Sciences USA, Bd. 105, Heft 15, S. 5756-5761, Online-Vorabveröffentlichung einsehbar unter http://www.pnas.org/cgi/content/abstract/0710409105v1).

Proteine sind die Grundlage des Lebens: Sie sorgen als Enzyme für den Stoffwechsel, sie steuern Wachstum und Kommunikation von Zellen und Lebewesen, sie formen Hüllen und Gerüststrukturen, und sie bewirken die Abwehr von Krankheitserregern.

Proteine bestehen aus Ketten von Aminosäuren. Um ihre Funktion ausüben zu können, müssen diese Aminosäureketten in einer bestimmten Weise räumlich gefaltet sein. Bei Hitze oder starkem Druck bricht diese Faltung auf - und damit erlischt die biologische Aktivität. Bei der Konservierung von Lebensmitteln ist das nützlich: Milch und rohes Fleisch werden durch Hitze keimfrei und damit länger haltbar, und einige Lebensmittelunternehmen sterilisieren heute Grapefruitsaft und Kochschinken mit Überdruck.

... mehr zu:
»Protein »Proteinfaltung »Temperatur

In einem Forschungsprojekt der Technischen Universität München haben jetzt der Physiker Prof. Josef Friedrich und der Biochemiker Prof. Arne Skerra zusammen mit ihren Mitarbeitern am Wissenschaftszentrum Weihenstephan grundlegend untersucht, unter welchen Temperatur- und Druckverhältnissen Proteine noch gefaltet sind.

Dazu benutzten die TUM-Forscher eine Art Mini-Hochdruck-Schnellkochtopf, einen Diamanten mit einem winzigen Hohlraum von knapp einem halben Millimeter Durchmesser, in dem sich hohe Drücke einstellen und die Temperatur präzise verändern lassen. Als Untersuchungsobjekt diente ein Protein aus der Klasse der Anticaline, das in seiner kelchförmigen Tasche einen Farbstoff bindet. Entfaltet sich das Protein, wird der Farbstoff freigesetzt und beginnt zu fluoreszieren. Dieses Leuchten in dem winzigen Hohlraum des Diamanten konnten die Wissenschaftler mit einem hochempfindlichen Instrument messen.

Die systematischen Messreihen mit diesem maßgeschneiderten Modellsystem erlaubten fundamentale Einblicke in die Biophysik der Proteinfaltung: Durch mathematische Ableitungen, ausgehend von den Gesetzmäßigkeiten der Thermodynamik, bestimmten die TUM-Forscher erstmals die Naturkonstante der Proteinfaltung.

Sie konnten beweisen, dass sich Proteine nicht nur bei hohen Temperaturen und Drücken, sondern auch bei negativen Temperaturen und - soweit erreichbar -"negativen Drücken" entfalten. Daraus ergab sich die Schlussfolgerung, dass Proteine ganz allgemein innerhalb eines ellipsenförmigen Bereichs des Druck/Temperatur-Diagramms gefaltet sind.

Auch wenn es schon aus früheren Untersuchungen entsprechende Hinweise gab, konnten die Weihenstephaner Wissenschaftler dieses biomolekulare Verhalten erstmals in allgemeiner Form bestätigen und vor allem eine theoretische Begründung dafür liefern, dass es sich zwangsläufig aus der physikalischen Natur der Proteine ergibt.

Langfristig, so glauben die TUM-Forscher, wird diese Entdeckung dabei helfen, das bislang in der Biochemie ungelöste Problem der Proteinfaltung zu knacken. Darüber hinaus ergeben sich mögliche praktische Anwendungen zum Beispiel bei der Stabilisierung von Waschmittel- oder Lebensmittelenzymen bei hohen oder niedrigen Temperaturen, oder bei der Behandlung von Proteinfaltungskrankheiten wie der Creutzfeldt-Jakob-Krankheit, der Alzheimer-Erkrankung oder dem "Rinderwahnsinn" BSE.

Kontakt:
Prof. Dr. Arne Skerra
Lehrstuhl für Biologische Chemie
Technische Universität München
85350 Freising-Weihenstephan
Tel: +49 (0)8161 71-4351
Email: skerra@wzw.tum.de
http://www.wzw.tum.de/bc
Publikation:
Johannes Wiedersich, Simone Köhler, Arne Skerra and Josef Friedrich: "Temperature and pressure dependence of protein stability: The engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram". Proceedings of the National Academy of Sciences USA, Bd. 105, Heft 15, S. 5756-5761 (Veröffentlichung am 15. April 2008)

/cgi/content/abstract/0710409105v1).

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.wzw.tum.de/bc
http://www.pnas.org/cgi/content/abstract/0710409105v1

Weitere Berichte zu: Protein Proteinfaltung Temperatur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie