Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami der Eiweißstoffe: TUM-Wissenschaftler bestimmen Naturkonstante der Proteinfaltung

09.04.2008
Innerhalb welcher Grenzen von Temperatur und Druck Proteine stabil sind, haben Biochemiker und Biophysiker des Wissenschaftszentrums Weihenstephan der Technischen Universität München (TUM) systematisch bestimmt und dadurch erstmals eine "Naturkonstante" der Proteinfaltung ermittelt.

Ähnlich wie die Elementarladung oder das Planck'sche Wirkungsquantum in der Physik wird die dabei entdeckte Gesetzmäßigkeit in den Biowissenschaften helfen, die dreidimensionale Struktur und Stabilität von Eiweißstoffen zu verstehen und vorherzusagen (Veröffentlichung am 15. April 2008 in den Proceedings of the National Academy of Sciences USA, Bd. 105, Heft 15, S. 5756-5761, Online-Vorabveröffentlichung einsehbar unter http://www.pnas.org/cgi/content/abstract/0710409105v1).

Proteine sind die Grundlage des Lebens: Sie sorgen als Enzyme für den Stoffwechsel, sie steuern Wachstum und Kommunikation von Zellen und Lebewesen, sie formen Hüllen und Gerüststrukturen, und sie bewirken die Abwehr von Krankheitserregern.

Proteine bestehen aus Ketten von Aminosäuren. Um ihre Funktion ausüben zu können, müssen diese Aminosäureketten in einer bestimmten Weise räumlich gefaltet sein. Bei Hitze oder starkem Druck bricht diese Faltung auf - und damit erlischt die biologische Aktivität. Bei der Konservierung von Lebensmitteln ist das nützlich: Milch und rohes Fleisch werden durch Hitze keimfrei und damit länger haltbar, und einige Lebensmittelunternehmen sterilisieren heute Grapefruitsaft und Kochschinken mit Überdruck.

... mehr zu:
»Protein »Proteinfaltung »Temperatur

In einem Forschungsprojekt der Technischen Universität München haben jetzt der Physiker Prof. Josef Friedrich und der Biochemiker Prof. Arne Skerra zusammen mit ihren Mitarbeitern am Wissenschaftszentrum Weihenstephan grundlegend untersucht, unter welchen Temperatur- und Druckverhältnissen Proteine noch gefaltet sind.

Dazu benutzten die TUM-Forscher eine Art Mini-Hochdruck-Schnellkochtopf, einen Diamanten mit einem winzigen Hohlraum von knapp einem halben Millimeter Durchmesser, in dem sich hohe Drücke einstellen und die Temperatur präzise verändern lassen. Als Untersuchungsobjekt diente ein Protein aus der Klasse der Anticaline, das in seiner kelchförmigen Tasche einen Farbstoff bindet. Entfaltet sich das Protein, wird der Farbstoff freigesetzt und beginnt zu fluoreszieren. Dieses Leuchten in dem winzigen Hohlraum des Diamanten konnten die Wissenschaftler mit einem hochempfindlichen Instrument messen.

Die systematischen Messreihen mit diesem maßgeschneiderten Modellsystem erlaubten fundamentale Einblicke in die Biophysik der Proteinfaltung: Durch mathematische Ableitungen, ausgehend von den Gesetzmäßigkeiten der Thermodynamik, bestimmten die TUM-Forscher erstmals die Naturkonstante der Proteinfaltung.

Sie konnten beweisen, dass sich Proteine nicht nur bei hohen Temperaturen und Drücken, sondern auch bei negativen Temperaturen und - soweit erreichbar -"negativen Drücken" entfalten. Daraus ergab sich die Schlussfolgerung, dass Proteine ganz allgemein innerhalb eines ellipsenförmigen Bereichs des Druck/Temperatur-Diagramms gefaltet sind.

Auch wenn es schon aus früheren Untersuchungen entsprechende Hinweise gab, konnten die Weihenstephaner Wissenschaftler dieses biomolekulare Verhalten erstmals in allgemeiner Form bestätigen und vor allem eine theoretische Begründung dafür liefern, dass es sich zwangsläufig aus der physikalischen Natur der Proteine ergibt.

Langfristig, so glauben die TUM-Forscher, wird diese Entdeckung dabei helfen, das bislang in der Biochemie ungelöste Problem der Proteinfaltung zu knacken. Darüber hinaus ergeben sich mögliche praktische Anwendungen zum Beispiel bei der Stabilisierung von Waschmittel- oder Lebensmittelenzymen bei hohen oder niedrigen Temperaturen, oder bei der Behandlung von Proteinfaltungskrankheiten wie der Creutzfeldt-Jakob-Krankheit, der Alzheimer-Erkrankung oder dem "Rinderwahnsinn" BSE.

Kontakt:
Prof. Dr. Arne Skerra
Lehrstuhl für Biologische Chemie
Technische Universität München
85350 Freising-Weihenstephan
Tel: +49 (0)8161 71-4351
Email: skerra@wzw.tum.de
http://www.wzw.tum.de/bc
Publikation:
Johannes Wiedersich, Simone Köhler, Arne Skerra and Josef Friedrich: "Temperature and pressure dependence of protein stability: The engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram". Proceedings of the National Academy of Sciences USA, Bd. 105, Heft 15, S. 5756-5761 (Veröffentlichung am 15. April 2008)

/cgi/content/abstract/0710409105v1).

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.wzw.tum.de/bc
http://www.pnas.org/cgi/content/abstract/0710409105v1

Weitere Berichte zu: Protein Proteinfaltung Temperatur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie