Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Navigationshilfe für wachsende Nervenzellen

13.03.2008
Ein Protein sorgt für geregeltes Zellwachstum und weist den Weg zum Ziel

Das menschliche Gehirn enthält rund hundert Milliarden Nervenzellen, von denen jede tausendfach mit anderen Zellen verbunden ist. Wie wissen die Nervenfasern, wohin sie wachsen und mit wem sie einen Kontakt bilden müssen?

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben jetzt ein Protein gefunden, dass den Nervenzellen im Auge der Fruchtfliege den Weg zu ihren Partnerzellen weist und gleichzeitig ungewollte Zusammenstöße verhindert. Ähnliche Mechanismen könnten auch am Aufbau des Wirbeltier-Nervensystems beteiligt sein.

Sich in einer unbekannten Großstadt ohne Navigationsgerät oder kartenlesenden Beifahrer zurechtzufinden ist hart: an jeder Kreuzung muss aufs Neue entschieden werden, wo es weitergeht; gleichzeitig müssen Unmengen an Verkehrsregeln beachtet und Zusammenstöße mit anderen Verkehrsteilnehmern vermieden werden. In einer ganz ähnlichen Situation finden sich junge Nervenzellen, deren Fortsätze in ihrer "Großstadt", dem Gehirn, die richtigen Partnerzellen finden müssen.

In einem unüberschaubaren Zellgewirr muss auch hier an vielen Wegpunkten neu entschieden werden, in welcher Richtung das richtige Ziel liegt. Erschwerend kommt hinzu, dass auf kleinstem Raum tausende von Zellen ihre Fortsätze (Axone) auf ihre Partnerzellen zuwachsen lassen. Ungewollte Zusammenstöße könnten daher schnell zu einem "Verkehrschaos" führen - mit schweren Folgen: kann eine Nervenzelle ihr Ziel nicht erreichen, führt dies meist zu Funktionsstörungen im Organismus.

Wie finden Nervenzellen den richtigen Weg?

Um diese Frage zu beantworten haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie die Augenentwicklung der Fruchtfliege Drosophila genauer unter die Lupe genommen. Das Fliegenauge eignet sich ganz besonders als Forschungsobjekt: Zum einen ist es im Vergleich zum Wirbeltiersystem sehr viel einfacher aufgebaut und daher leichter zu untersuchen. Gleichzeitig ist es jedoch komplex genug, um generelle Mechanismen der neuronalen Wegfindung aufzuklären. Zum anderen kann die Fruchtfliegenforschung auf eine Vielzahl genetischer Methoden zurückgreifen, sodass zum Beispiel ganz gezielt Gene der Augenentwicklung verändert werden können, ohne dabei das übrige Nervensystem zu verändern. Diese Vorteile haben sich die Martinsrieder Wissenschaftler nun zunutze gemacht. Durch das gezielte Ausschalten eines Gens haben sie das Protein Gogo (Golden Goal) identifiziert, das Nervenzellen während der Entwicklung des Fliegenauges nicht nur als Navigationshilfe dient, sondern auch als Abstandshalter zu anderen Nervenzellen.

Ein Komplexauge in vieler Hinsicht

Das Facetten- oder Komplexauge der Fruchtfliege besteht aus rund 800 Einzelaugen, von denen jedes acht Fotorezeptorzellen besitzt. Diese spezialisierten Nervenzellen wandeln die Lichtimpulse in elektrische Signale um, die später im Gehirn wieder ein Bild ergeben. Während der Entwicklung des Fliegenauges wächst je ein Zellfortsatz pro Rezeptorzelle auf die nächste Verschaltungsebene, die Lamina zu. Durch das parallele Wachstum der acht Zellfortsätze pro Einzelauge bildet sich ein Sehstab. Für zwei der acht Zellen ist die Reise jedoch noch nicht zu Ende: sie wachsen weiter bis zur nächsten Verschaltungsebene, der Medulla, wobei sich die Sehbahnen überkreuzen und das Facettenbild um 180° gedreht wird. Die Neurobiologen des Max-Planck-Instituts zeigten nun, wie die Nervenzellen ihre Partnerzelle in diesem komplizierten Wachstumsschema finden können: Eingebettet in die Zellmembran sitzt an der Spitze des auswachsenden Zellfortsatzes das Protein Gogo. Kann durch eine Genveränderung dieses Protein nicht mehr gebildet werden, so stoßen die Zellfortsätze zusammen und verklumpen - der Sehstab kann sich nicht mehr ausbilden. Auch die weiterwachsenden Zellfortsätze können ihre Partnerzellen in der Medulla ohne Gogo nicht mehr finden - sie irren am Rand der Medulla entlang, bis ihr Wachstumspotential erschöpft ist (Abbildung 1). Fazit: ohne Gogo kann sich das Fliegenauge nicht mehr richtig entwickeln.

Navigationshilfen auch in anderen Nervensystemen?

"Durch die genetischen und zellbiologischen Hinweise vermuten wir, dass Gogo ein Rezeptor-Protein ist, das über Bindungspartner zur gegenseitigen Abstoßung oder Anziehung von Zellfortsätzen führt", erklärt Takashi Suzuki, der Leiter der Studie. Andere Bindungspartner können zur Erkennung der richtigen Partnerzelle in der Medulla führen. Wahrscheinlich sind auch noch andere Rezeptor-Proteine und ihre Bindungspartner an der Wegfindung der Nervenzellen beteiligt; jedoch wohl nicht mehr als zehn, vermutet Suzuki. "Wenn wir die Kombination dieser Moleküle verstanden haben, werden wir hoffentlich die Entwicklung des gesamten Systems verstehen können." Viele der Fruchtfliegen-Gene spielen auch bei der Entwicklung des Nervensystems anderer Organismen eine Rolle. Die Erkenntnisse zur Augenentwicklung der Fruchtfliege sind daher auch zum Verständnis unseres eigenen Nervensystems wichtig.

Originalveröffentlichung:

Tatiana Tomasi, Satoko Hakeda-Suzuki, Stephan Ohler, Alexander Schleiffer, Takashi Suzuki

The transmembrane protein Golden Goal regulates R8 photoreceptor axon-axon and axon-target interactions

Kontakt
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Tel.: +49 89 8578-3414
Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axguide/index.html

Weitere Berichte zu: Fruchtfliege Gen Nervensystem Nervenzelle Partnerzelle Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Humane Sachbearbeitung mit Künstlicher Intelligenz

18.01.2018 | Informationstechnologie

Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie

18.01.2018 | Biowissenschaften Chemie

Bisher älteste bekannte Sauerstoffoase entdeckt

18.01.2018 | Geowissenschaften