Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Navigationshilfe für wachsende Nervenzellen

13.03.2008
Ein Protein sorgt für geregeltes Zellwachstum und weist den Weg zum Ziel

Das menschliche Gehirn enthält rund hundert Milliarden Nervenzellen, von denen jede tausendfach mit anderen Zellen verbunden ist. Wie wissen die Nervenfasern, wohin sie wachsen und mit wem sie einen Kontakt bilden müssen?

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben jetzt ein Protein gefunden, dass den Nervenzellen im Auge der Fruchtfliege den Weg zu ihren Partnerzellen weist und gleichzeitig ungewollte Zusammenstöße verhindert. Ähnliche Mechanismen könnten auch am Aufbau des Wirbeltier-Nervensystems beteiligt sein.

Sich in einer unbekannten Großstadt ohne Navigationsgerät oder kartenlesenden Beifahrer zurechtzufinden ist hart: an jeder Kreuzung muss aufs Neue entschieden werden, wo es weitergeht; gleichzeitig müssen Unmengen an Verkehrsregeln beachtet und Zusammenstöße mit anderen Verkehrsteilnehmern vermieden werden. In einer ganz ähnlichen Situation finden sich junge Nervenzellen, deren Fortsätze in ihrer "Großstadt", dem Gehirn, die richtigen Partnerzellen finden müssen.

In einem unüberschaubaren Zellgewirr muss auch hier an vielen Wegpunkten neu entschieden werden, in welcher Richtung das richtige Ziel liegt. Erschwerend kommt hinzu, dass auf kleinstem Raum tausende von Zellen ihre Fortsätze (Axone) auf ihre Partnerzellen zuwachsen lassen. Ungewollte Zusammenstöße könnten daher schnell zu einem "Verkehrschaos" führen - mit schweren Folgen: kann eine Nervenzelle ihr Ziel nicht erreichen, führt dies meist zu Funktionsstörungen im Organismus.

Wie finden Nervenzellen den richtigen Weg?

Um diese Frage zu beantworten haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie die Augenentwicklung der Fruchtfliege Drosophila genauer unter die Lupe genommen. Das Fliegenauge eignet sich ganz besonders als Forschungsobjekt: Zum einen ist es im Vergleich zum Wirbeltiersystem sehr viel einfacher aufgebaut und daher leichter zu untersuchen. Gleichzeitig ist es jedoch komplex genug, um generelle Mechanismen der neuronalen Wegfindung aufzuklären. Zum anderen kann die Fruchtfliegenforschung auf eine Vielzahl genetischer Methoden zurückgreifen, sodass zum Beispiel ganz gezielt Gene der Augenentwicklung verändert werden können, ohne dabei das übrige Nervensystem zu verändern. Diese Vorteile haben sich die Martinsrieder Wissenschaftler nun zunutze gemacht. Durch das gezielte Ausschalten eines Gens haben sie das Protein Gogo (Golden Goal) identifiziert, das Nervenzellen während der Entwicklung des Fliegenauges nicht nur als Navigationshilfe dient, sondern auch als Abstandshalter zu anderen Nervenzellen.

Ein Komplexauge in vieler Hinsicht

Das Facetten- oder Komplexauge der Fruchtfliege besteht aus rund 800 Einzelaugen, von denen jedes acht Fotorezeptorzellen besitzt. Diese spezialisierten Nervenzellen wandeln die Lichtimpulse in elektrische Signale um, die später im Gehirn wieder ein Bild ergeben. Während der Entwicklung des Fliegenauges wächst je ein Zellfortsatz pro Rezeptorzelle auf die nächste Verschaltungsebene, die Lamina zu. Durch das parallele Wachstum der acht Zellfortsätze pro Einzelauge bildet sich ein Sehstab. Für zwei der acht Zellen ist die Reise jedoch noch nicht zu Ende: sie wachsen weiter bis zur nächsten Verschaltungsebene, der Medulla, wobei sich die Sehbahnen überkreuzen und das Facettenbild um 180° gedreht wird. Die Neurobiologen des Max-Planck-Instituts zeigten nun, wie die Nervenzellen ihre Partnerzelle in diesem komplizierten Wachstumsschema finden können: Eingebettet in die Zellmembran sitzt an der Spitze des auswachsenden Zellfortsatzes das Protein Gogo. Kann durch eine Genveränderung dieses Protein nicht mehr gebildet werden, so stoßen die Zellfortsätze zusammen und verklumpen - der Sehstab kann sich nicht mehr ausbilden. Auch die weiterwachsenden Zellfortsätze können ihre Partnerzellen in der Medulla ohne Gogo nicht mehr finden - sie irren am Rand der Medulla entlang, bis ihr Wachstumspotential erschöpft ist (Abbildung 1). Fazit: ohne Gogo kann sich das Fliegenauge nicht mehr richtig entwickeln.

Navigationshilfen auch in anderen Nervensystemen?

"Durch die genetischen und zellbiologischen Hinweise vermuten wir, dass Gogo ein Rezeptor-Protein ist, das über Bindungspartner zur gegenseitigen Abstoßung oder Anziehung von Zellfortsätzen führt", erklärt Takashi Suzuki, der Leiter der Studie. Andere Bindungspartner können zur Erkennung der richtigen Partnerzelle in der Medulla führen. Wahrscheinlich sind auch noch andere Rezeptor-Proteine und ihre Bindungspartner an der Wegfindung der Nervenzellen beteiligt; jedoch wohl nicht mehr als zehn, vermutet Suzuki. "Wenn wir die Kombination dieser Moleküle verstanden haben, werden wir hoffentlich die Entwicklung des gesamten Systems verstehen können." Viele der Fruchtfliegen-Gene spielen auch bei der Entwicklung des Nervensystems anderer Organismen eine Rolle. Die Erkenntnisse zur Augenentwicklung der Fruchtfliege sind daher auch zum Verständnis unseres eigenen Nervensystems wichtig.

Originalveröffentlichung:

Tatiana Tomasi, Satoko Hakeda-Suzuki, Stephan Ohler, Alexander Schleiffer, Takashi Suzuki

The transmembrane protein Golden Goal regulates R8 photoreceptor axon-axon and axon-target interactions

Kontakt
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Tel.: +49 89 8578-3414
Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axguide/index.html

Weitere Berichte zu: Fruchtfliege Gen Nervensystem Nervenzelle Partnerzelle Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie