Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Navigationshilfe für wachsende Nervenzellen

13.03.2008
Ein Protein sorgt für geregeltes Zellwachstum und weist den Weg zum Ziel

Das menschliche Gehirn enthält rund hundert Milliarden Nervenzellen, von denen jede tausendfach mit anderen Zellen verbunden ist. Wie wissen die Nervenfasern, wohin sie wachsen und mit wem sie einen Kontakt bilden müssen?

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben jetzt ein Protein gefunden, dass den Nervenzellen im Auge der Fruchtfliege den Weg zu ihren Partnerzellen weist und gleichzeitig ungewollte Zusammenstöße verhindert. Ähnliche Mechanismen könnten auch am Aufbau des Wirbeltier-Nervensystems beteiligt sein.

Sich in einer unbekannten Großstadt ohne Navigationsgerät oder kartenlesenden Beifahrer zurechtzufinden ist hart: an jeder Kreuzung muss aufs Neue entschieden werden, wo es weitergeht; gleichzeitig müssen Unmengen an Verkehrsregeln beachtet und Zusammenstöße mit anderen Verkehrsteilnehmern vermieden werden. In einer ganz ähnlichen Situation finden sich junge Nervenzellen, deren Fortsätze in ihrer "Großstadt", dem Gehirn, die richtigen Partnerzellen finden müssen.

In einem unüberschaubaren Zellgewirr muss auch hier an vielen Wegpunkten neu entschieden werden, in welcher Richtung das richtige Ziel liegt. Erschwerend kommt hinzu, dass auf kleinstem Raum tausende von Zellen ihre Fortsätze (Axone) auf ihre Partnerzellen zuwachsen lassen. Ungewollte Zusammenstöße könnten daher schnell zu einem "Verkehrschaos" führen - mit schweren Folgen: kann eine Nervenzelle ihr Ziel nicht erreichen, führt dies meist zu Funktionsstörungen im Organismus.

Wie finden Nervenzellen den richtigen Weg?

Um diese Frage zu beantworten haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie die Augenentwicklung der Fruchtfliege Drosophila genauer unter die Lupe genommen. Das Fliegenauge eignet sich ganz besonders als Forschungsobjekt: Zum einen ist es im Vergleich zum Wirbeltiersystem sehr viel einfacher aufgebaut und daher leichter zu untersuchen. Gleichzeitig ist es jedoch komplex genug, um generelle Mechanismen der neuronalen Wegfindung aufzuklären. Zum anderen kann die Fruchtfliegenforschung auf eine Vielzahl genetischer Methoden zurückgreifen, sodass zum Beispiel ganz gezielt Gene der Augenentwicklung verändert werden können, ohne dabei das übrige Nervensystem zu verändern. Diese Vorteile haben sich die Martinsrieder Wissenschaftler nun zunutze gemacht. Durch das gezielte Ausschalten eines Gens haben sie das Protein Gogo (Golden Goal) identifiziert, das Nervenzellen während der Entwicklung des Fliegenauges nicht nur als Navigationshilfe dient, sondern auch als Abstandshalter zu anderen Nervenzellen.

Ein Komplexauge in vieler Hinsicht

Das Facetten- oder Komplexauge der Fruchtfliege besteht aus rund 800 Einzelaugen, von denen jedes acht Fotorezeptorzellen besitzt. Diese spezialisierten Nervenzellen wandeln die Lichtimpulse in elektrische Signale um, die später im Gehirn wieder ein Bild ergeben. Während der Entwicklung des Fliegenauges wächst je ein Zellfortsatz pro Rezeptorzelle auf die nächste Verschaltungsebene, die Lamina zu. Durch das parallele Wachstum der acht Zellfortsätze pro Einzelauge bildet sich ein Sehstab. Für zwei der acht Zellen ist die Reise jedoch noch nicht zu Ende: sie wachsen weiter bis zur nächsten Verschaltungsebene, der Medulla, wobei sich die Sehbahnen überkreuzen und das Facettenbild um 180° gedreht wird. Die Neurobiologen des Max-Planck-Instituts zeigten nun, wie die Nervenzellen ihre Partnerzelle in diesem komplizierten Wachstumsschema finden können: Eingebettet in die Zellmembran sitzt an der Spitze des auswachsenden Zellfortsatzes das Protein Gogo. Kann durch eine Genveränderung dieses Protein nicht mehr gebildet werden, so stoßen die Zellfortsätze zusammen und verklumpen - der Sehstab kann sich nicht mehr ausbilden. Auch die weiterwachsenden Zellfortsätze können ihre Partnerzellen in der Medulla ohne Gogo nicht mehr finden - sie irren am Rand der Medulla entlang, bis ihr Wachstumspotential erschöpft ist (Abbildung 1). Fazit: ohne Gogo kann sich das Fliegenauge nicht mehr richtig entwickeln.

Navigationshilfen auch in anderen Nervensystemen?

"Durch die genetischen und zellbiologischen Hinweise vermuten wir, dass Gogo ein Rezeptor-Protein ist, das über Bindungspartner zur gegenseitigen Abstoßung oder Anziehung von Zellfortsätzen führt", erklärt Takashi Suzuki, der Leiter der Studie. Andere Bindungspartner können zur Erkennung der richtigen Partnerzelle in der Medulla führen. Wahrscheinlich sind auch noch andere Rezeptor-Proteine und ihre Bindungspartner an der Wegfindung der Nervenzellen beteiligt; jedoch wohl nicht mehr als zehn, vermutet Suzuki. "Wenn wir die Kombination dieser Moleküle verstanden haben, werden wir hoffentlich die Entwicklung des gesamten Systems verstehen können." Viele der Fruchtfliegen-Gene spielen auch bei der Entwicklung des Nervensystems anderer Organismen eine Rolle. Die Erkenntnisse zur Augenentwicklung der Fruchtfliege sind daher auch zum Verständnis unseres eigenen Nervensystems wichtig.

Originalveröffentlichung:

Tatiana Tomasi, Satoko Hakeda-Suzuki, Stephan Ohler, Alexander Schleiffer, Takashi Suzuki

The transmembrane protein Golden Goal regulates R8 photoreceptor axon-axon and axon-target interactions

Kontakt
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Tel.: +49 89 8578-3414
Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axguide/index.html

Weitere Berichte zu: Fruchtfliege Gen Nervensystem Nervenzelle Partnerzelle Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics