Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Paradigmenwechsel: Schalter für den programmierten Zelltod fördert Ausbreitung des Glioblastoms

11.03.2008
Das Protein CD95 ist bekannt als molekularer Schalter, der in Zellen das Todesprogramm Apoptose auslöst. Wissenschaftler aus dem Deutschen Krebsforschungszentrum zeigten nun, dass eine Aktivierung dieses Schalters beim bösartigen Glioblastom eine völlig unerwartete Wirkung hat.

Statt die Krebszellen in den Tod zu treiben, wird ihre Ausbreitung sogar gefördert: Aktivierung von CD95 steigert die Fähigkeit des Tumors, invasiv in umgebendes Hirngewebe einzuwachsen. Dieses Ergebnis fordert ein Umdenken bei der Entwicklung neuer Behandlungsmethoden und zeigt zugleich einen unerwarteten Angriffspunkt für neue Therapien auf.

Bösartige Tumoren haben meist die Fähigkeit verloren, sich durch den programmierten Zelltod Apoptose selbst zu zerstören. Daher ist der Krebs oft gegen Chemo- und Strahlentherapien resistent, deren Wirkung darauf beruht, die Tumorzellen in den Selbstmord zu treiben. Verantwortlich für diese Apoptose-Resistenz sind Defekte in einem der zahlreichen molekularen Schalter, die den Selbsttötungsprozess regulieren.

Wissenschaftler versuchen daher seit langem, in Krebszellen die Bildung der Schalter und damit die Apoptosefähigkeit wiederherzustellen. Eines der wichtigsten dieser Schaltmoleküle ist CD95 auf der Zelloberfläche, das durch Bindung seines Partners CD95L aktiviert wird. Dies löst eine ganze Kaskade von biochemischen Signalen aus, die zum Tod der Zelle führt.

Im Deutschen Krebsforschungszentrum untersuchte Dr. Ana Martin-Villalba mit ihrer Arbeitsgruppe die Funktion von CD95 auf Zellen des Glioblastoms. Bei diesem extrem bösartigen Hirntumor versagen alle Therapien: Der Krebs wächst korallenstockartig mit feinsten Ausläufern in umgebendes Hirngewebe ein, einzelne, isolierte Tumorzellen dringen sogar noch weiter vor. So haben Chirurgen keine Chance, das Tumorgewebe restlos zu entfernen. Darüber hinaus ist das Glioblastom hochresistent gegen Chemo- und Strahlentherapien.

Martin-Villalbas Team fand auf Zellen des Glioblastoms große Mengen von CD95; CD95L tritt dagegen vor allem an der so genannten Invasionsfront auf, wo das Tumorgewebe an gesundes Hirngewebe angrenzt. Trotz der Anwesenheit beider Moleküle sind die Zellen resistent gegen den programmierten Zelltod. Aber nicht nur das: Wird CD95 auf der Oberfläche der Glioblastomzellen durch CD95L aktiviert, führt dies zur Bildung des Proteins MMP9, das als molekulare Schere bekannt ist. MMP9 durchschneidet die netzartig verwobenen Proteinfasern, die verschiedene Gewebeschichten des Körpers voneinander abgrenzen. Mithilfe dieser Proteinschere bahnen sich Tumorzellen den Weg in gesundes Gewebe und bilden so die gefährlichen Ausläufer, die tief ins Gehirngewebe vordringen.

Das Ergebnis zeigte den Wissenschaftlern einen Weg auf, die Invasion des Glioblastoms zu stoppen: Sie behandelten Mäuse, denen Glioblastome transplantiert worden waren, mit einem Antikörper, der CD95 blockiert. Daraufhin kam die Wanderung der Krebszellen zum Erliegen.

"Das ist fast ein Paradigmenwechsel", sagt Ana Martin-Villaba. "Bisher galt es immer, die Ausbildung von CD95 und CD95L in Tumorzellen zu fördern. Beim Glioblastom müssen wir nun davor warnen: So würde die Ausbreitung des Tumors nur zusätzlich begünstigt. Das Ziel ist eher, die Aktivierung von CD95 zu blockieren." Dieser therapeutische Ansatz kann derzeit jedoch noch nicht beim Menschen untersucht werden, da noch kein brauchbarer Antikörper gegen das CD95-Protein des Menschen zur Verfügung steht.

Susanne Kleber, Ignacio Sancho-Martinez, Benedict Wiestler, Alexandra Beisel, Christian Gieffers, Oliver Hill, Meinolf Thiemann, Wolf Müller, Jaromir Sykora, Nina Schreglmann, Elisabeth Letellier, Cecilia Zuliani, Stefan Klussmann, Marcin Teodorczyk, Hermann-Josef Gröne, Tom M. Ganten, Holger Sültmann, Jochen Tüttenberg, Andreas von Deimling, Anne Regnier-Vigouroux, Christel Herold-Mende und Ana Martin-Villalba: Yes and PI3K bind CD95 to signal invasion of Glioblastoma. Molecular Cell, 11. März 2008

Das Deutsche Krebsforschungszentrum hat die Aufgabe, die Mechanismen der Krebsentstehung systematisch zu untersuchen und Krebsrisikofaktoren zu erfassen. Die Ergebnisse dieser Grundlagenforschung sollen zu neuen Ansätzen in Vorbeugung, Diagnose und Therapie von Krebserkrankungen führen. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Berichte zu: Glioblastom Krebszelle Tumorzelle Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit