Entstanden Knochen zuerst in der Haut?

„Was verbindet den Menschen mit einem Lanzettfischchen, dem Schleimaal und dem Katzenhai?“ Dieser Frage sind Wissenschaftler des Max-Planck-Instituts für molekulare Genetik und ihre Kollegen aus Berlin, Hamburg und Tübingen nachgegangen.

Sie untersuchten anhand wichtiger Vertreter der Chorda-Tiere, zu denen auch die Wirbeltiere gehören, die phylogenetischen Ursprünge von Knorpeln, Knochen, Zähnen und Skelett. Dabei nahmen sie auf molekularer Ebene bestimmte Entwicklungsgene (Runx 1-3) unter die Lupe, die eine Schlüsselrolle in der Skelettentwicklung spielen.

Die Ergebnisse verblüfften die Forscher: Denn die Aktivitäten dieser Gene ließen sich mehrere hundert Millionen Jahre zurückverfolgen. Runx-Gene waren sowohl im Kiemendarm von Lanzettfischchen, im Knorpel von Schleimaalen sowie im Knorpel und den zahn-ähnlichen Hautschuppen des Katzenhais aktiv. Letzteres lässt auf eine gemeinsame Vorläuferstruktur von Knochen und den zahn-ähnlichen Hautschuppen beim Hai schließen. (PLoS Genetics, 6. März 2008)

Die Skelettentwicklung ist in der Stammesgeschichte der Wirbeltiere von großer Bedeutung, jedoch ist über die molekulare Entstehung des Skeletts noch wenig bekannt. Bei den Säugetieren werden sogenannte Runx-Gene (Runx 1-3) beschrieben, die eine wichtige Rolle bei der Blutbildung (Hämatopoese) spielen oder für die Skelettentwicklung unerlässlich sind. Sie beeinflussen die Knochenbildung und Zahnentwicklung, die Reifung von Knorpelzellen und regulieren direkt das „Indian hedgehog“-Gen (Ihh), ein weiteres essentielles Gen für die Knorpel- und Knochenentwicklung.

Die Säugetiere gehören – evolutionsgeschichtlich – zur Klasse der Wirbeltiere. Die Wirbeltiere (Vertebraten) werden wiederum mit den stammesgeschichtlich viel älteren Manteltieren (Tunicata) und Schädellosen (Acrania) zu den Chordatieren zusammengefasst. Diese tragen ein im Rückenbereich liegendes elastisches Achsenskelett (Chorda dorsalis), das Rumpf und Bewegungssystem zusammenhält. Bei den Wirbeltieren bildete sich die Chorda zugunsten der Wirbelsäule stark zurück. Die Reste der Chorda finden sich beim Menschen noch in der Bandscheibe wieder.

Jochen Hecht und Volkhard Seitz, beide Wissenschaftler am Max-Planck-Institut für molekulare Genetik in Berlin, haben die Anzahl und Expression von Runx-Gene und ihre Interaktion mit Hedgehog-Genen an Lanzettfischchen, Schleimaalen und Katzenhaien untersucht. Ihr Ziel war es mithilfe dieser Organismen, die unterschiedliche evolutionäre Epochen repräsentieren, einen Zusammenhang zwischen Genentwicklung und Skelettentwicklung herzustellen. Die zentrale Frage dabei: Wann entstand in der Evolution das Skelett, aus welchen Strukturen entwickelte es sich?

Lanzettfischchen (Branchiostoma lanceolatum) sind sehr ursprüngliche Chordatiere ohne Schädel (Acrania). Sie leben an den Küsten der Meere, meist halb eingegraben in Sand oder Schlamm und filtern dort Plankton und kleine organische Partikel als Nahrung aus dem Wasser. „Bei diesem sehr nahen, lebenden Verwandten der Wirbeltiere konnten wir lediglich ein einzelnes Runx-Gen nachweisen“, sagt Jochen Hecht. „Es findet sich in ihrem Kiemenbereich, der durch zellfreie knorpelartige Spangen stabilisiert wird“. Zusammen mit dem Runx-Gen wird ein Hedgehog-Gen exprimiert, desssen Aktivität bereits – wie bei den Säugetieren – durch das Runx-Gen beeinflusst wird.

Anders beim Schleimaal (Myxine glutinosa): Dieses sehr ursprüngliche Wirbeltier, das noch keine Kiefer besitzt (Agnatha), ist vorwiegend ein Aasfresser. Es lebt weltweit in den Meeren in Wassertiefen bis über tausend Metern. Schleimaale besitzen zwei Knorpeltypen – eine weiche und eine härtere Form. Darin isolierten die Wissenschaftler zwei Runx-Gene. In der härteren Knorpelform war vor allem ein Gen sehr aktiv. „Dies lässt auf eine sehr wichtige Rolle dieses Gens bei der Knorpel- und Knochenentwicklung schließen“, sagt Hecht.

In den Hautzähnen (Placoidschuppen) des kleingefleckten Katzenhais (Scyliorhinus canicula), die die Haihaut rauh und äußerst widerstandsfähig machen, konnten die Wissenschaftler eine hohe Aktivität aller drei Runx-Gene feststellen. Da Haifische stammesgeschichtlich sehr alt sind und als Knorpelfische keinen Knochen besitzen, könnte dies darauf hindeuten, dass Knochen während der Evolution zuerst in der Haut entstanden sind und erst später zur Verstärkung des Skeletts benutzt wurden. Möglich wäre es allerdings auch, dass Katzenhaie einmal Knochen besaßen, diese aber sekundär wieder reduziert haben.

Originalveröffentlichung:

J. Hecht, S. Stricker, U. Wiecha, A. Stiege, G. Panopoulou, L. Podsiadlowski, A.J. Proustka, C. Dieterich, S. Ehrich, J. Suvorova, S. Mundlos, V. Seitz
Evolution of a Core Gene Network für Skeletogenesis in Chordates
PLoS Genetics, 6. März 2008

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer