Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entstanden Knochen zuerst in der Haut?

07.03.2008
Die Isolierung von bestimmten Genen aus den Hautzähnen des Katzenhais legt diese Vermutung nahe

"Was verbindet den Menschen mit einem Lanzettfischchen, dem Schleimaal und dem Katzenhai?" Dieser Frage sind Wissenschaftler des Max-Planck-Instituts für molekulare Genetik und ihre Kollegen aus Berlin, Hamburg und Tübingen nachgegangen.

Sie untersuchten anhand wichtiger Vertreter der Chorda-Tiere, zu denen auch die Wirbeltiere gehören, die phylogenetischen Ursprünge von Knorpeln, Knochen, Zähnen und Skelett. Dabei nahmen sie auf molekularer Ebene bestimmte Entwicklungsgene (Runx 1-3) unter die Lupe, die eine Schlüsselrolle in der Skelettentwicklung spielen.

Die Ergebnisse verblüfften die Forscher: Denn die Aktivitäten dieser Gene ließen sich mehrere hundert Millionen Jahre zurückverfolgen. Runx-Gene waren sowohl im Kiemendarm von Lanzettfischchen, im Knorpel von Schleimaalen sowie im Knorpel und den zahn-ähnlichen Hautschuppen des Katzenhais aktiv. Letzteres lässt auf eine gemeinsame Vorläuferstruktur von Knochen und den zahn-ähnlichen Hautschuppen beim Hai schließen. (PLoS Genetics, 6. März 2008)

Die Skelettentwicklung ist in der Stammesgeschichte der Wirbeltiere von großer Bedeutung, jedoch ist über die molekulare Entstehung des Skeletts noch wenig bekannt. Bei den Säugetieren werden sogenannte Runx-Gene (Runx 1-3) beschrieben, die eine wichtige Rolle bei der Blutbildung (Hämatopoese) spielen oder für die Skelettentwicklung unerlässlich sind. Sie beeinflussen die Knochenbildung und Zahnentwicklung, die Reifung von Knorpelzellen und regulieren direkt das "Indian hedgehog"-Gen (Ihh), ein weiteres essentielles Gen für die Knorpel- und Knochenentwicklung.

Die Säugetiere gehören - evolutionsgeschichtlich - zur Klasse der Wirbeltiere. Die Wirbeltiere (Vertebraten) werden wiederum mit den stammesgeschichtlich viel älteren Manteltieren (Tunicata) und Schädellosen (Acrania) zu den Chordatieren zusammengefasst. Diese tragen ein im Rückenbereich liegendes elastisches Achsenskelett (Chorda dorsalis), das Rumpf und Bewegungssystem zusammenhält. Bei den Wirbeltieren bildete sich die Chorda zugunsten der Wirbelsäule stark zurück. Die Reste der Chorda finden sich beim Menschen noch in der Bandscheibe wieder.

Jochen Hecht und Volkhard Seitz, beide Wissenschaftler am Max-Planck-Institut für molekulare Genetik in Berlin, haben die Anzahl und Expression von Runx-Gene und ihre Interaktion mit Hedgehog-Genen an Lanzettfischchen, Schleimaalen und Katzenhaien untersucht. Ihr Ziel war es mithilfe dieser Organismen, die unterschiedliche evolutionäre Epochen repräsentieren, einen Zusammenhang zwischen Genentwicklung und Skelettentwicklung herzustellen. Die zentrale Frage dabei: Wann entstand in der Evolution das Skelett, aus welchen Strukturen entwickelte es sich?

Lanzettfischchen (Branchiostoma lanceolatum) sind sehr ursprüngliche Chordatiere ohne Schädel (Acrania). Sie leben an den Küsten der Meere, meist halb eingegraben in Sand oder Schlamm und filtern dort Plankton und kleine organische Partikel als Nahrung aus dem Wasser. "Bei diesem sehr nahen, lebenden Verwandten der Wirbeltiere konnten wir lediglich ein einzelnes Runx-Gen nachweisen", sagt Jochen Hecht. "Es findet sich in ihrem Kiemenbereich, der durch zellfreie knorpelartige Spangen stabilisiert wird". Zusammen mit dem Runx-Gen wird ein Hedgehog-Gen exprimiert, desssen Aktivität bereits - wie bei den Säugetieren - durch das Runx-Gen beeinflusst wird.

Anders beim Schleimaal (Myxine glutinosa): Dieses sehr ursprüngliche Wirbeltier, das noch keine Kiefer besitzt (Agnatha), ist vorwiegend ein Aasfresser. Es lebt weltweit in den Meeren in Wassertiefen bis über tausend Metern. Schleimaale besitzen zwei Knorpeltypen - eine weiche und eine härtere Form. Darin isolierten die Wissenschaftler zwei Runx-Gene. In der härteren Knorpelform war vor allem ein Gen sehr aktiv. "Dies lässt auf eine sehr wichtige Rolle dieses Gens bei der Knorpel- und Knochenentwicklung schließen", sagt Hecht.

In den Hautzähnen (Placoidschuppen) des kleingefleckten Katzenhais (Scyliorhinus canicula), die die Haihaut rauh und äußerst widerstandsfähig machen, konnten die Wissenschaftler eine hohe Aktivität aller drei Runx-Gene feststellen. Da Haifische stammesgeschichtlich sehr alt sind und als Knorpelfische keinen Knochen besitzen, könnte dies darauf hindeuten, dass Knochen während der Evolution zuerst in der Haut entstanden sind und erst später zur Verstärkung des Skeletts benutzt wurden. Möglich wäre es allerdings auch, dass Katzenhaie einmal Knochen besaßen, diese aber sekundär wieder reduziert haben.

Originalveröffentlichung:

J. Hecht, S. Stricker, U. Wiecha, A. Stiege, G. Panopoulou, L. Podsiadlowski, A.J. Proustka, C. Dieterich, S. Ehrich, J. Suvorova, S. Mundlos, V. Seitz
Evolution of a Core Gene Network für Skeletogenesis in Chordates
PLoS Genetics, 6. März 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chorda Gen Skelettentwicklung Säugetier Wirbeltier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise