Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Röntgenstruktur eines Neurotransmitter-Rezeptors

06.03.2008
Neurotransmitter-Rezeptoren spielen eine Schlüsselrolle in der elektrischen Signalübertragung in Nervenzellen. Bisher weiss man nur wenig über die Struktur dieser Rezeptoren oder Ionenkanäle.

Forscher der Universität Zürich und des Nationalen Forschungsschwerpunkts Strukturbiologie konnten jetzt die erste detaillierte Struktur eines nahen bakteriellen Verwandten von Neurotransmitter-Rezeptoren entschlüsseln. Die Publikation erscheint am 6. März 2008 in der Online-Ausgabe des Wissenschaftsmagazins "Nature".

Vom Denken bis zur Bewegung wird unser Körper durch Elektrizität gesteuert. Grundlage für solche elektrischen Prozesse ist der kontrollierte Fluss von geladenen Teilchen, den Ionen, durch die Wände der Zellen, den Membranen. Da die Zellmembran für Ionen undurchlässig ist, braucht es so genannte Ionenkanäle. Diese sind selektiv und erlauben nur bestimmten Ionen den Durchfluss durch die Membran und anderen nicht. Ionenkanäle sind Proteine, die in der Membran sitzen und über Signale geöffnet werden.

Die Neurotransmitter-Rezeptoren oder Ionenkanäle spielen eine Schlüsselrolle in der elektrischen Signalübertragung in den Synapsen von Nerven- und Muskelzellen. Je nach ihrer Ionenselektivität aktivieren oder unterdrücken diese Rezeptoren elektrische Signale. Die Vertreter dieser Familie, die aktivierende Acetylcholin- und Serotonin-Rezeptoren und inhibierende Gaba- und Glycin-Rezeptoren, sind wichtige Angriffspunkte für Medikamente sowie bei Fehlfunktion Ursache für neurologische Krankheiten. Obwohl verschiedene Rezeptoren während der letzten Jahrzehnte im Brennpunkt der biochemischen Forschung gestanden sind, waren bisher noch keine detaillierten Strukturen dieser wichtigen Proteinklasse bekannt. Dieser Durchbruch wurde jetzt von der Arbeitsgruppe von Prof. Raimund Dutzler am Biochemischen Institut der Universität Zürich erzielt.

... mehr zu:
»Ion »Ionenkanal »Membran »Protein »Rezeptor

Für ihre Studien haben sich die Wissenschafter nahe bakterielle Verwandte von Neurotransmitter-Rezeptoren zu Nutze gemacht. In aufwendigen experimentellen Versuchen wurde das Protein in Bakterien hergestellt, isoliert und zur Kristallisation gebracht, um so den Aufbau studieren zu kön-nen. Mit Hilfe der Röntgenstrukturanalyse konnten die Forschenden dann die Raumstruktur des Ionenkanals aufklären. "Ohne die hervorragende Infrastruktur im Nationalen Forschungsschwerpunkt Strukturbiologie, den regelmässigen Zugang zur Schweizer Synchrotronquelle am Paul Scherrer Institut und am wichtigsten ohne hervorragende Mitarbeiter wäre der Erfolg in diesem experimentell sehr anspruchsvollen Gebiet unmöglich gewesen" sagte Prof. Raimund Dutzler.

Die Struktur zeigt ein Protein, das sehr ähnlich wie die humanen Rezeptoren aufgebaut ist. Aus diesem Grund dient der kompaktere bakterielle Rezeptor als wichtiges Modellsystem, um die grundlegenden Funktionsmechanismen wie das kontrollierte Öffnen und Schliessen des Kanals und seine Präferenz für bestimmte Ionen zu untersuchen. Der Kanal wird aus fünf gleichen Proteinketten gebildet. Er besteht aus zwei Teilen, einer Bindungsdomäne, die aus der Zellmembran herausragt und den Neurotransmitter bindet, und einem engen Kanal, der in der Membran sitzt und den Ionenfluss reguliert. Der Kanal der untersuchten Struktur ist geschlossen, wie der offene Kanal aussieht, ist im Moment noch nicht bekannt.

Laut Prof. Dutzler bildet die Struktur einen ersten wichtigen Teil eines Puzzles. Doch es benötigt weitere Experimente, um zu einem kompletten Bild zu gelangen, einem Bild, das am Ende den detaillierten Mechanismus dieses wichtigen physiologischen Prozesses zeigt und das zur Entwicklung neuer Medikamente beitragen kann.

Kontakt:

Prof. Raimund Dutzler, Biochemisches Institut, Universität Zürich
Tel. 0041 44 635 65 50
E-Mail: dutzler@bioc.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.bioc.uzh.ch

Weitere Berichte zu: Ion Ionenkanal Membran Protein Rezeptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie