Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Photosynthese-Proteine identifiziert

10.11.2000


Über 600 Proteine steuern die hochkomplexe Photosynthese in Grünpflanzen. In internationalen Arbeitsgruppen spüren Wissenschaftler diesem Geheimnis des Lebens auf moelkulargenetischer Ebene nach. Zwei der
plastidären Proteine hat jetzt Prof. Dr. Ralf Oelmüller an der Universität Jena identifiziert und ihre genaue Funktion analysiert.

Im Keller seines Instituts züchtet Prof. Dr. Ralf Oelmüller Unkraut. Arabidopsis thaliana, die Ackerschmalwand, ein unscheinbares genügsames Gewächs, wie man es auch an heimischen Bahnrainen findet, hat es dem Pflanzenphysiologen aus dem Jenaer Uni-Institut für Allgemeine Botanik angetan. "Ein dankbarer Modellorganismus", urteilt der Wissenschaftler, "dessen Erbsubstanz mit rund 26.000 Genen sehr gut erforscht und Baustein für Baustein in Datenbanken archiviert ist." Damit macht sich Oelmüller auf die Spur, einen alltäglichen Vorgang im Reich der Pflanzen zu erforschen, ohne den es auf unserer Erde praktisch kein Leben gäbe: die Photosynthese.

Was dabei passiert, lernt jedes Kind in der Schule: Alle grünen Pflanzenbestandteile sind bei Sonnenschein in der Lage, Kohlendioxid aufzunehmen und die Kohlenstoffatome zu energiereichen Zuckermolekülen zu verknüpfen. Davon ernährt sich die Pflanze. Als Abfallprodukt scheidet sie Sauerstoff aus - eben die "gute Luft", die Menschen und Tiere atmen. Biochemisch verläuft die Photosynthese über vier Hauptschritte. Zunächst entsteht dabei durch das Sonnenlicht ein energiereiches Vorprodukt, Nicotinamidadenindinucleotidphosphat (NADPH), das dann in einer so genannten Dunkelreaktion Kohlendioxid in Zucker- bzw. Stärkemoleküle umwandelt. "Photosynthese ist ein hochkomplexer Vorgang, den wir längst noch nicht bis ins molekulargenetische Detail verstanden haben", erklärt Ralf Oelmüller.

Rund 70-80 Strukturproteine werden für die Photosynthese benötigt. Sie sind durch Gene sowohl im Zellkern als auch in den Chloroplasten - Zellorganellen, die den Blättern die grüne Farbe verleihen - kodiert und organisieren den Photosynthese-Ablauf; außerdem sind noch mindestens 500 weitere Proteine, die in geringen Konzentrationen im "Zellsaft" schwimmen, daran beteiligt. Diese regeln zum Beispiel die Kommunikation zwischen den beiden beteiligten Zellorganellen.

Welches Protein für welche Aufgabe genau verantwortlich ist, ermitteln die Forscher über einen naheliegenden Trick: Sie stellen Pflanzen-Mutanten mit einem Gendefekt her und prüfen nach, welche Funktionen in dem fein austarierten Steuerungsprozess genau gestört sind. Über 50 der rund 600 Proteine wurden bereits von internationalen Arbeitsgruppen aufgeklärt, zwei weitere hat nun Ralf Oelmüller identifiziert. "Eine Kärrnerarbeit, ein Puzzlespiel", stöhnt er, "wenn wir Glück haben, schaffen wir ein Protein pro Jahr."

In der Wissenschaft bedeutet jede dieser Proteinidentifikationen eine kleine Sensation. Entsprechend stolz präsentiert Oelmüller seine beiden Ackerschmalwand-Mutanten, die besonderer Pflege bedürfen; denn zur Photosynthese sind sie nicht mehr in der Lage. "Wir halten sie auf einer Zuckernährlösung", erklärt der Professor, "in der freien Natur könnten sie nicht überleben."

Inzwischen haben die Jenaer Forscher genau herausgefunden, welche Aufgaben die in den beiden Mutanten fehlenden Proteine üblicherweise erfüllen. Das eine ist offensichtlich maßgeblich daran beteiligt, den so genannten Photosystem I-Komplex "zusammenzubauen", also jenen "Motor" zu organisieren, der aus Proteinen von Zellkern und Chloroplasten besteht und das energiereiche NADPH erzeugt. Das andere, ebenfalls ein plastidäres Protein, welches aus dem Zellsaft in die Chloroplasten einzudringen vermag, kontrolliert die Informationsübermittlung innerhalb der Chloroplasten.

In einigen Jahren, so schätzt Prof. Oelmüller, wird das Protein-Puzzle zu einem vollständigen molekulargenetischen Drehbuch der Photosynthese zusammengefügt sein. "Wir spüren einem der großen Rätsel in der Natur nach, für das die Evolution Jahrmillionen gebraucht hat", erläutert der Pflanzenphysiologe und schmunzelt: "Gemessen daran sind wir doch ziemlich schnell." Was aber werden die Forscher mit dem neuen Wissen anfangen. "Grundlagenforschung dient zunächst dem reinen Erkenntnisgewinn", stellt Oelmüller klar, "aber sicher gibt es dann auch Anwendungsmöglichkeiten in der ,grünen Genetik’". Zum Beispiel, durch gezielte Eingriffe in die Pflanzen-DNA solche Arten zu züchten, die in ihrem Stoffwechsel mehr Sauerstoff oder höherwertigen Zucker produzieren. Beides wäre angesichts der zunehmenden globalen Ökologieprobleme ein riesiger Fortschritt.

Ansprechpartner:
Prof. Dr. Ralf Oelmüller
Lehrstuhl für Pflanzenphysiologie der Friedrich-Schiller-Universität Jena
Tel.: 03641/949231, Fax: 949232
E-Mail: b7oera@rz.uni-jena.de


Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Dr. Wolfgang Hirsch
Fürstengraben 1
07743 Jena
Tel.: 03641/931031
Fax: 03641/931032
E-Mail: roe@uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Chloroplasten Kohlendioxid Photosynthese Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise