Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei Photosynthese-Proteine identifiziert

10.11.2000


Über 600 Proteine steuern die hochkomplexe Photosynthese in Grünpflanzen. In internationalen Arbeitsgruppen spüren Wissenschaftler diesem Geheimnis des Lebens auf moelkulargenetischer Ebene nach. Zwei der
plastidären Proteine hat jetzt Prof. Dr. Ralf Oelmüller an der Universität Jena identifiziert und ihre genaue Funktion analysiert.

Im Keller seines Instituts züchtet Prof. Dr. Ralf Oelmüller Unkraut. Arabidopsis thaliana, die Ackerschmalwand, ein unscheinbares genügsames Gewächs, wie man es auch an heimischen Bahnrainen findet, hat es dem Pflanzenphysiologen aus dem Jenaer Uni-Institut für Allgemeine Botanik angetan. "Ein dankbarer Modellorganismus", urteilt der Wissenschaftler, "dessen Erbsubstanz mit rund 26.000 Genen sehr gut erforscht und Baustein für Baustein in Datenbanken archiviert ist." Damit macht sich Oelmüller auf die Spur, einen alltäglichen Vorgang im Reich der Pflanzen zu erforschen, ohne den es auf unserer Erde praktisch kein Leben gäbe: die Photosynthese.

Was dabei passiert, lernt jedes Kind in der Schule: Alle grünen Pflanzenbestandteile sind bei Sonnenschein in der Lage, Kohlendioxid aufzunehmen und die Kohlenstoffatome zu energiereichen Zuckermolekülen zu verknüpfen. Davon ernährt sich die Pflanze. Als Abfallprodukt scheidet sie Sauerstoff aus - eben die "gute Luft", die Menschen und Tiere atmen. Biochemisch verläuft die Photosynthese über vier Hauptschritte. Zunächst entsteht dabei durch das Sonnenlicht ein energiereiches Vorprodukt, Nicotinamidadenindinucleotidphosphat (NADPH), das dann in einer so genannten Dunkelreaktion Kohlendioxid in Zucker- bzw. Stärkemoleküle umwandelt. "Photosynthese ist ein hochkomplexer Vorgang, den wir längst noch nicht bis ins molekulargenetische Detail verstanden haben", erklärt Ralf Oelmüller.

Rund 70-80 Strukturproteine werden für die Photosynthese benötigt. Sie sind durch Gene sowohl im Zellkern als auch in den Chloroplasten - Zellorganellen, die den Blättern die grüne Farbe verleihen - kodiert und organisieren den Photosynthese-Ablauf; außerdem sind noch mindestens 500 weitere Proteine, die in geringen Konzentrationen im "Zellsaft" schwimmen, daran beteiligt. Diese regeln zum Beispiel die Kommunikation zwischen den beiden beteiligten Zellorganellen.

Welches Protein für welche Aufgabe genau verantwortlich ist, ermitteln die Forscher über einen naheliegenden Trick: Sie stellen Pflanzen-Mutanten mit einem Gendefekt her und prüfen nach, welche Funktionen in dem fein austarierten Steuerungsprozess genau gestört sind. Über 50 der rund 600 Proteine wurden bereits von internationalen Arbeitsgruppen aufgeklärt, zwei weitere hat nun Ralf Oelmüller identifiziert. "Eine Kärrnerarbeit, ein Puzzlespiel", stöhnt er, "wenn wir Glück haben, schaffen wir ein Protein pro Jahr."

In der Wissenschaft bedeutet jede dieser Proteinidentifikationen eine kleine Sensation. Entsprechend stolz präsentiert Oelmüller seine beiden Ackerschmalwand-Mutanten, die besonderer Pflege bedürfen; denn zur Photosynthese sind sie nicht mehr in der Lage. "Wir halten sie auf einer Zuckernährlösung", erklärt der Professor, "in der freien Natur könnten sie nicht überleben."

Inzwischen haben die Jenaer Forscher genau herausgefunden, welche Aufgaben die in den beiden Mutanten fehlenden Proteine üblicherweise erfüllen. Das eine ist offensichtlich maßgeblich daran beteiligt, den so genannten Photosystem I-Komplex "zusammenzubauen", also jenen "Motor" zu organisieren, der aus Proteinen von Zellkern und Chloroplasten besteht und das energiereiche NADPH erzeugt. Das andere, ebenfalls ein plastidäres Protein, welches aus dem Zellsaft in die Chloroplasten einzudringen vermag, kontrolliert die Informationsübermittlung innerhalb der Chloroplasten.

In einigen Jahren, so schätzt Prof. Oelmüller, wird das Protein-Puzzle zu einem vollständigen molekulargenetischen Drehbuch der Photosynthese zusammengefügt sein. "Wir spüren einem der großen Rätsel in der Natur nach, für das die Evolution Jahrmillionen gebraucht hat", erläutert der Pflanzenphysiologe und schmunzelt: "Gemessen daran sind wir doch ziemlich schnell." Was aber werden die Forscher mit dem neuen Wissen anfangen. "Grundlagenforschung dient zunächst dem reinen Erkenntnisgewinn", stellt Oelmüller klar, "aber sicher gibt es dann auch Anwendungsmöglichkeiten in der ,grünen Genetik’". Zum Beispiel, durch gezielte Eingriffe in die Pflanzen-DNA solche Arten zu züchten, die in ihrem Stoffwechsel mehr Sauerstoff oder höherwertigen Zucker produzieren. Beides wäre angesichts der zunehmenden globalen Ökologieprobleme ein riesiger Fortschritt.

Ansprechpartner:
Prof. Dr. Ralf Oelmüller
Lehrstuhl für Pflanzenphysiologie der Friedrich-Schiller-Universität Jena
Tel.: 03641/949231, Fax: 949232
E-Mail: b7oera@rz.uni-jena.de


Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Dr. Wolfgang Hirsch
Fürstengraben 1
07743 Jena
Tel.: 03641/931031
Fax: 03641/931032
E-Mail: roe@uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Chloroplasten Kohlendioxid Photosynthese Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften