Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensor überwacht Reifeprozess von Obst

04.03.2008
Reife Äpfel neben Bananen legen - besser nicht. Vor allem Bananen geben viel Ethylen ab, das die Äpfel noch schneller reifen lässt. Großhändler nutzen diesen Effekt: Sie stellen die Ethylenkonzentration in Obst-Lagerhallen gezielt ein. Ein kostengünstiger Sensor hilft dabei.

Obstesser kennen den Effekt: Legt man einen Apfel neben eine Banane, reift er schneller als gewöhnlich. Des Rätsels Lösung liegt im Gas Ethylen, das jedes Obst in gewisser Menge abgibt - Bananen in besonderem Maße.

Diesen Einfluss nutzen auch Obstgroßhändler: Sie begasen grüne Bananen oder auch Tomaten mit Ethylen, um diese schneller reifen zu lassen - so entwickeln die Früchte ihre typische gelbe oder rote Farbe, die die Kunden erwarten. Umgekehrt halten die Großhändler die Ethylenkonzentration in den Lagerhallen niedrig, wenn sich das Obst noch lange halten soll. Bei beiden Prozessen ist Fingerspitzengefühl gefragt: Pumpt man zu viel Ethylen in die Obsthallen, werden die Bananen braun und überreif. Wird aus den gekühlten Hallen zu viel Gas abgesaugt, entweicht auch recht viel kühle Luft, was unnötig Energie kostet.

Ein neuer Sensor misst die Ethylenkonzentration nun genau und kostengünstig. "Dieser Sensor ist deutlich kompakter und mit etwa 1000 Euro auch wesentlich günstiger als herkömmliche komplexe Messsysteme, die ein Zehnfaches kosten", sagt Dr. Jürgen Wöllenstein, Gruppenleiter am Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg. Er und sein Team haben den Sensor gemeinsam mit den Kollegen der Universität Barcelona entwickelt. Seine Kernstücke sind ein Infrarot-Strahler, ähnlich einem Wärmestrahler, der Strahlung verschiedener Wellenlänge abgibt, und ein Filter, der nur die Strahlung mit einer Wellenlänge von 10,6 Mikrometern hindurch lässt. Der Filter ist notwendig, da Ethylen Strahlung dieser Wellenlänge absorbiert.

... mehr zu:
»Strahlung

Je mehr Ethylen in der Luft ist, desto weniger Strahlung kommt beim Detektor an, der ebenfalls im Sensor integriert ist. Die Methode zur Konzentrationsmessung wird bereits für CO2 verwendet. "Bei Ethylen liegt die Herausforderung darin, dass die Wellenlänge mit 10,6 Mikrometern sehr groß ist. Wir mussten sicherstellen, dass die Strahlung einen sehr langen Weg durch die Luft zurücklegen kann - nur so können wir den Effekt und damit die Ethylenkonzentration gut messen", sagt Wöllenstein. Mit vergoldeten Spiegeln lenken die Forscher die Strahlung so ab, dass sie im Sensor von der Größe einer Zigarettenschachtel einen Weg von über drei Metern zurücklegt. Auch den Infrarotstrahler haben die Wissenschaftler optimiert: Er strahlt möglichst viel Wärme in der passenden Wellenlänge ab.

Einen Prototypen des Sensors gibt es bereits. In etwa zwei Jahren könnte der Sensor Obstgroßhändlern Aufschluss darüber geben, wie weit sie den Ethylenhahn aufdrehen oder die Zufuhr drosseln müssen.

Jürgen Wöllenstein | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de
http://www.fraunhofer.de/presse/presseinformationen/2008/03/Mediendienst32008Thema4.jsp

Weitere Berichte zu: Strahlung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics