Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Meningokokken gefährlich macht

29.02.2008
Ein 16-jähriger Schüler aus Mindelheim im Ostallgäu ist an einer Gehirnhautentzuendung gestorben.

Das meldete gestern (28. Februar 2008) der Landesdienst Bayern der Nachrichtenagentur dpa. Was die Bakterien (Meningokokken), die diese Krankheit auslösen, so gefährlich macht, beschreiben Forscher der Universitäten Würzburg und Bielefeld in einer aktuellen Arbeit im US-Wissenschaftsblatt PNAS.

Ebenso wie der Darm sind auch Nase und Rachen des Menschen von Kleinstlebewesen besiedelt. Bei etwa zehn Prozent der Bevölkerung kommen dort als harmlose Bewohner der Schleimhäute unter anderem Meningokokken vor. Von diesen Bakterien gibt es aber auch Stämme, die lebensbedrohliche Blutvergiftungen und Hirnhautentzündungen auslösen. Wie die friedlichen Mitbewohner im Lauf der Zeit zu aggressiven Krankheitserregern geworden sind, war bislang unbekannt. Forscher von den Universitäten Würzburg und Bielefeld bieten dafür jetzt erstmals eine Erklärung an.

"Betrachtet man die Evolution der Meningokokken, dann waren deren ursprünglichste Vertreter noch nicht von einer Schleimkapsel umhüllt", sagt Professor Ulrich Vogel vom Institut für Hygiene und Mikrobiologie der Uni Würzburg. Diese Kapsel sei eine unabdingbare Voraussetzung dafür, dass die Bakterien in die Blutbahn des Menschen eindringen können. Allerdings gebe es auch Meningokokken, die zwar eine Kapsel besitzen, aber den Menschen trotzdem nicht krank machen. Beim Wandel zum Erreger muss also noch mehr passiert sein.

Was das gewesen sein könnte, dafür haben die Forscher um die Projektleiter Christoph Schön und Matthias Frosch gemeinsam mit Kollegen vom Würzburger Lehrstuhl für Bioinformatik (Tobias Müller und Torben Friedrich) und vom Bielefelder Center for Biotechnology nun Anhaltspunkte gefunden. Ihre Analysen ergaben Hinweise, dass Meningokokken sich zunächst als kapselfreie Erreger von anderen Arten, wie den Gonokokken, abspalteten. Erst im Laufe der weiteren Evolution bauten sie die Erbinformation zur Bildung der Kapsel in ihr Chromosom ein. Anschließend nahmen sie ein mobiles DNA-Element auf, einen so genannten Prophagen - und das führte dann bei einigen der bekapselten Stämme zur Umlagerung von Teilen des Chromosoms. "Wir nehmen an, dass es nach diesen Umlagerungen zu Veränderungen der Aktivität kritischer Gene kam und dass manche Bakterienstämme dadurch zu Krankheitserregern wurden", so die Wissenschaftler.

Hohes Fieber, steifer Nacken

Wenn diese Erreger dann zuschlagen, trifft es meist Kleinkinder, die noch keine ausreichenden Abwehrkräfte aufgebaut haben, oder Teenager, zwischen denen die Erreger mit hoher Frequenz ausgetauscht werden. Die Kranken bekommen hohes Fieber, starke Kopfschmerzen, und - besonders typisch für die Hirnhautentzündung - einen steifen Nacken. Auch Benommenheit, Lichtempfindlichkeit, Gelenkschmerzen und rot-violette Hautflecken können sich einstellen. Im Extremfall kommt es mit einem rasanten Krankheitsverlauf zum Schock.

Spätestens dann besteht Lebensgefahr, und etwa zehn Prozent der Erkrankten sterben auch an der Infektion. Ganz entscheidend für den Ausgang der Krankheit ist der Zeitpunkt des Therapiebeginns: Meningokokken reagieren sehr empfindlich auf Antibiotika; je früher diese gegeben werden, desto besser. Ein Impfstoff gegen die in Deutschland am häufigsten vorkommende Meningokokken-Serogruppe B, die für rund drei Viertel aller Fälle verantwortlich ist, steht bislang nicht zur Verfügung. Eine generelle Impfempfehlung gibt es in der Bundesrepublik daher nur für die Serogruppe C.

Obwohl harmlose Meningokokken beim Menschen so häufig vorkommen, treten Erkrankungen relativ selten auf - pro Jahr werden in Deutschland etwa 600 Fälle registriert. Zum Vergleich: Tuberkulosefälle werden zehn Mal häufiger gemeldet.

Abstriche aus 8.000 Rachen

Für ihre Arbeit konnten die Würzburger Forscher auf umfangreiche Daten zurückgreifen. Zum Einen ist das Erbgut von drei hoch gefährlichen Meningokokken-Stämmen seit Jahren entschlüsselt. Daraus allerdings ergaben sich keine Hinweise auf die Faktoren, die die Bakterien aggressiv machen. Die Mikrobiologen gingen darum vor Jahren auch einen anderen Weg: In einer großen Studie nahmen sie Abstriche aus dem Rachen von rund 8.000 Kindern, Jugendlichen und Soldaten in Bayern. In diesem Material fanden sie 800 Meningokokken-Stämme, die sie allesamt genetisch charakterisierten. Die Ergebnisse der Studie publizierten die Forscher im Jahr 2005 im Journal of Infectious Diseases.

Von den 800 bayerischen Stämmen wählten sie für ihre aktuelle Untersuchung drei unterschiedliche und völlig harmlose aus. Gemeinsam mit dem Bioinformatik-Lehrstuhl von Professor Thomas Dandekar entwickelten sie neue Strategien, um das Erbgut der Bakterien zu durchforsten und es mit demjenigen der krank machenden Stämme zu vergleichen. Mit diesen Analysen kamen sie schließlich zu dem Ergebnis, das in der US-amerikanischen Wissenschaftszeitschrift PNAS (Proceedings of the National Academy of Sciences) nachzulesen ist.

Die beteiligten Würzburger Wissenschaftler sind in Sachen Meningokokken als renommierte Experten anerkannt: Das Bundesgesundheitsministerium hat bereits 2002 das Institut für Hygiene und Mikrobiologie der Universität Würzburg zum Nationalen Referenzzentrum für Meningokokken erhoben. Hierdurch wurden die Wissenschaftler um Institutsleiter Professor Matthias Frosch mit der Erregertypisierung und bakteriologischen Überwachung der Meningokokken-Infektionen in Deutschland betraut. Diese Aufgaben erfüllen sie im Auftrag des Robert-Koch-Instituts (Berlin).

"Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitides", Christoph Schoen, Heike Claus; Ulrich Vogel; Anja Schramm-Glück; Biju Joseph; Oliver Kurzai; Corinna Schmitt; Tobias Müller; Torben Friedrich, Matthias Frosch (alle Universität Würzburg), Jochen Blom; Alexander Goesmann; Sebastian Konietzny; Burkhard Linke (Universität Bielefeld), Petra Brandt (MWG Biotech AG, Ebersberg), PNAS, online publiziert am 25. Februar 2008, doi_10.1073_pnas.0800151105

Hinweis für Redaktionen und Journalisten: Die Originalpublikation können Sie von der Pressestelle der Uni Würzburg als pdf-Datei bekommen: presse@zv.uni-wuerzburg.de

Projektleiter Christoph Schön ist derzeit leider nicht in Würzburg zu erreichen. Für weitere Informationen wenden Sie sich darum bitte an Prof. Dr. Ulrich Vogel, T (0931) 201-46802, uvogel@hygiene.uni-wuerzburg.de, oder an Prof. Dr. Matthias Frosch, T (0931) 201-46161, mfrosch@hygiene.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Berichte zu: Bakterie Krankheitserreger Meningokokken PNAS

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik