Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3,1 Millionen Euro für neue Forschergruppe

20.02.2008
Wissenschaftler der Universitäten Mainz und Bonn wollen das so genannte Endocannabinoid-System genauer unter die Lupe nehmen.

Die Deutsche Forschungsgemeinschaft (DFG) fördert die Forschergruppe in den nächsten drei Jahren mit 3,1 Millionen Euro. Endocannabinoide tragen ihren Namen nach der Hanfpflanze Cannabis. Sie ähneln dem Hanf-Inhaltsstoff Tetrahydrocannabinol (THC), der für die berauschende Wirkung von Marihuana verantwortlich ist. Im menschlichen Körper spielt das Endocannabinoid-System eine extrem wichtige Rolle - und das nicht nur im Gehirn: Läuft es aus dem Ruder, können Herzkrankheiten, Allergien, Osteoporose oder Gedächtnisstörungen die Folge sein.

Um die berauschende Wirkung der Hanf-Pflanze Cannabis weiß die Menschheit schon seit Jahrhunderten. Verantwortlich ist ihr Inhaltsstoff Tetrahydrocannabinol (THC): THC dockt im Gehirn an bestimmte Stellen in den Neuronen an, die so genannten CB1-Rezeptoren. Dadurch verändert es die Signalverarbeitung - Folge ist ein Rauschzustand.

Dass es den CB1-Rezeptor überhaupt gibt, hat einen guten Grund: Auch der menschliche Körper selbst stellt nämlich Substanzen her, die an den Rezeptor binden. Diese Endocannabinoide beeinflussen dadurch bestimmte Hirnfunktionen - beispielsweise das Gedächtnis. "Erstaunlicherweise entfalten Endocannabinoide aber auch in anderen Zellen des Körpers eine Wirkung", erklärt der Sprecher der neuen Forschergruppe Professor Dr. Andreas Zimmer. "Wir haben beispielsweise kürzlich nachgewiesen, dass sie das Knochenwachstum oder auch Entzündungsvorgänge in der Haut regulieren. Dazu binden sie an eine andere Zielstruktur, den CB2-Rezeptor, der im Gehirn nicht vorkommt."

Inzwischen kristallisiert sich heraus, dass das Endocannabinoid-System im Körper eine zentrale Funktion ausübt: "Wir vermuten, dass es einen Regelkreis darstellt, der den Körper im Gleichgewicht hält", erklärt Zimmer. Beispielsweise schüttet der Körper bei Gefahr Botenstoffe aus, die Herzfrequenz und Blutdruck erhöhen. So kann er gegebenenfalls schnell flüchten - oder sich einem Kampf stellen. Ist die Gefahr vorbei, beruhigt sich der Organismus wieder. Und gerade für diese Rückkehr zum Normalzustand scheinen Endocannabinoide wichtig zu sein.

Dauerstress ist für den Körper extrem schädlich. Eine Fehlfunktion des Endocannabinoid-Systems kann daher vermutlich zu ernsthaften Krankheiten führen - darunter Depressionen, chronische Schmerzen, Herzkrankheiten oder Drogensucht. Die Arbeitsgruppen in Bonn und Mainz wollen daher unter anderem herausfinden, wie der Körper das System reguliert. "Endocannabinoide haben nur eine kurze Lebensdauer", erklärt Professor Zimmer. "Der Körper baut sie oft innerhalb von Minuten wieder ab. Uns interessiert, wie er das macht und ob wir dabei mit Medikamenten eingreifen können." Im Tierexperiment wollen die Wissenschaftler zudem detaillierter untersuchen, welche Folge eine Fehlfunktion der CB1- und CB2-Rezeptoren haben kann. Mittelfristig erhofft sich die Forschergruppe neue Erkenntnisse, wie Depressionen oder Herz-Kreislauf-Erkrankungen entstehen und sich eventuell therapieren lassen.

Kontakt:
Professor Dr. Andreas Zimmer
Institut für Molekulare Psychiatrie des Universitätsklinikums Bonn
Telefon: 0228/688-5300
E-Mail: neuro@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Depression Endocannabinoid Herzkrankheit THC

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics