Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutstillung: Prozess erkannt, Infarkt gebannt?

18.02.2008
Bisher unbekannte Proteine der Blutstillung sind möglicher Angriffspunkt für neue Infarkttherapie

Wissenschaftler um Bernhard Nieswandt vom Rudolf-Virchow-Zentrum/ DFG-Forschungszentrum und Reinhard Fässler vom Max-Planck-Institut für Biochemie klären fundamentalen Schritt der Blutstillung auf. Zwei neue Proteine - Talin-1 und Kindlin-3 - spielen dabei eine entscheidende Rolle und werden damit zu Zielmolekülen für die Entwicklung von Medikamenten gegen Herzinfarkt oder Schlaganfall. Ihre Ergebnisse veröffentlichen die Forscher jetzt online in "Nature Medicine" und in der Dezemberausgabe der Zeitschrift "The Journal of Experimental Medicine".

Wie ein verletztes Blutgefäß verschlossen wird? Darauf hätten sicher die meisten eine Antwort parat - eine Gerinnungskaskade führt in verletzten Gefäßen dazu, dass Blutplättchen zu einem Blutpfropf verklumpen, der die Blutung stillt. Doch viele Details, die zur Blutstillung führen sind bisher noch unbekannt.

Ein tiefes Verständnis dieser Prozesse ist vor allem nötig, um Erkrankungen wie Herzinfarkt oder Schlaganfall zu verstehen und behandeln zu können. Ein solcher Blutpfropf entsteht nämlich auch in erkrankten Gefäßen und kann dort zu Durchblutungsstörungen oder zum vollständigen Verschluss einer Arterie führen. Es kommt zum Herzinfarkt oder Schlaganfall.

Bisherige Medikamente sind nicht ausreichend, neue Ansatzpunkte müssen gefunden werden. Seit einiger Zeit untersucht das Team um Bernhard Nieswandt daher verschiedene Proteine in und auf der Oberfläche von Blutplättchen, denn jedes Protein könnte an der Ausbildung eines Blutpfropfens beteiligt sein. In Kooperation mit der Gruppe von Reinhard Fässler untersuchten sie jetzt Proteine, die eine spezielle Art von Integrinen auf Blutplättchen aktivieren könnten. Integrine sind Proteine, die bei einem Gefäßdefekt aktiviert werden und daraufhin Blutplättchen an geschädigte Gefäßwände heften oder diese über lange elastische Fasern miteinander vernetzen.

Die Wissenschaftler beschreiben jetzt in ihren beiden Veröffentlichungen, dass die bisher unbekannten Proteine Talin-1 und Kindlin-3 Integrine direkt aktivieren. Studien an isolierten Blutplättchen zeigen erstmalig, dass Mäuse, bei denen die Bildung von Talin-1 verhindert wurde, Integrine nicht aktivieren können. Die Tiere können keine Blutpfropfen ausbilden, Blutungen in verletzten Gefäßen werden nicht gestillt. Bei Mäusen, denen das Protein Kindlin-3 fehlt, kommt es in verletzten Gefäßen ebenfalls nicht zur Verklumpung. Grund ist auch hier, dass die dazu notwendigen Integrine nicht aktiviert werden.

Wie das Ganze genau funktioniert weiß Bernhard Nieswandt: "Die Proteine Talin-1 und Kindlin-3 aktivieren Integrine, in dem sie die Struktur der Integrine auf der Oberfläche von Blutplättchen verändern, so dass sie sensitiver für die elastischen Fasern werden, die die Plättchen miteinander vernetzen." So lassen sich Blutungen innerhalb kürzester Zeit stoppen.

Der umgekehrte Weg ist für die klinische Anwendung denkbar: Eine Blockade der Proteine führt dazu, dass gefährliche Verklumpungen in erkrankten Gefäßen aufgelöst werden oder erst gar nicht entstehen können. Das macht sie zu möglichen Angriffspunkten für die Vorbeugung und Therapie von Herzinfarkt oder Schlaganfall. Besonders Kindlin-3 ist interessant für die Forscher, denn das Protein kommt ausschließlich in Zellen blutbildender Gewebe vor, Nebenwirkungen in anderen Zellen könnte man damit ausschließen.

Gerne schicken wir Ihnen die Publikationen auf Anfrage zu, weiteres Bildmaterial und Videoaufnahmen der Ausbildung eines Thrombus, bzw. das Ausbleiben ohne Talin-1 können auf Anfrage zur Verfügung gestellt werden.

"Loss of talin1 in platelets abrogates integrin activation, platelet aggregation and thrombus formation in vitro and in vivo", Bernhard Nieswandt, Markus Moser, Irina Pleines, David Varga-Szabo, Sue Monkley, David Critchley, Reinhard Fässler, 2007,Journal of Experimental Medicine, 204: 3113-3118. Published online Dec 17 2007, 10.1084/jem.20071827.

"Kindlin-3 is essential for integrin activation and platelet aggregation", Markus Moser, Bernhard Nieswandt, Siegfried Ussar, Miroslava Pozgajova, and Reinhard Fässler, 2007, Nature Medicine. Published online 17 Feb 2008; | doi:10.1038/nm1722

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Berichte zu: Blutpfropf Blutplättchen Blutstillung Blutung Herzinfarkt Protein Schlaganfall

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie