Max-Planck-Wissenschaftler enthüllen molekulare Details der Pflanzenabwehr

Angreifer haben keine Chance, denn sie treffen auf ein hochkomplexes Immunsystem der Pflanze, das den Angreifer schon nach dem ersten Kontakt heftig abwehrt. Rasterelektronenmikroskopische Aufnahme einer Pilzspore, die versucht, in die Pflanze einzudringen. Bild: Max-Planck-Institut für Züchtungsforschung

Pflanzen müssen sich tagtäglich gegen Angriffe von Krankheitserregern wie Pilze, Bakterien oder Viren wehren. Dabei muss das pflanzliche Immunsystem zwischen Eigen- und Fremdproteinen unterscheiden, um den Angreifer überhaupt erkennen zu können. Viele Erreger werden schon an der Pflanzenoberfläche abgewehrt. Dieser für die Pflanze überlebenswichtige Mechanismus war bisher kaum erforscht. Wissenschaftler aus dem Max-Planck-Institut für Züchtungsforschung in Köln fanden in Experimenten heraus, dass die Pflanze drei Protein-Bausteine benötigt, um einen an der Zellmembran sitzenden Abwehrkomplex zu bilden, der den Angreifer durch gezieltes Ausscheiden von wahrscheinlich giftigen Stoffen abwehrt (Nature, Online-Ausgabe vom 14. Februar 2008).

Das pflanzliche Immunsystem benutzt verschiedene Waffen im Kampf gegen potenzielle Krankheitserreger. Eine frühe Waffe mit breiter Wirksamkeit wird sofort nach dem ersten Kontakt mit dem Angreifer aktiviert und verhindert ein Eindringen in die Pflanze. Jetzt konnten Kölner Max-Planck-Forscher um Chian Kwon in Zusammenarbeit mit Wissenschaftlern aus Großbritannien und Deutschland zwei weitere molekulare Puzzlesteine identifizieren, die bei dieser Form der Abwehr wichtig sind.

In Experimenten an der Ackerschmalwand (Arabidopsis thaliana) fanden die Wissenschaftler insgesamt drei verschiedene Proteine, die den so genannten SNARE-Komplex bilden, der über Tod oder Leben der Pflanzen nach Pilzbefall entscheidet. Es ist schon seit längerem bekannt, dass SNARE-Proteine im Inneren der Zelle den Transport von Stoffen mit Hilfe von kleinen Transportbehältern, den so genannten Vesikeln, steuern. Tausende solcher Vesikel ermöglichen eine beständige und geordnete Kommunikation zwischen verschiedenen Kompartimenten einer Pflanzenzelle. Die Stoffe werden durch Verschmelzen der Vesikel mit der Zellmembran frei gegeben. Neue Untersuchungen der Kölner Forscher haben ergeben, dass der SNARE-gesteuerte Vesikeltransport auch für die Abwehr von potenziellen Krankheitserregern genutzt wird. Die Wissenschaftler vermuten, dass sich in den Vesikeln ein Gift befindet, mit dem der Angreifer getötet wird.

Das SNARE-Protein PEN und dessen Funktion bei der Abwehr waren den Forschern schon bekannt. Durch Experimente mit Mutanten der Ackerschmalwand, denen jeweils spezifische Proteine fehlten, fanden die Forscher zwei weitere Proteine – SNAP und VAMP -, die zusammen mit dem PEN-Protein den dreiteiligen SNARE-Abwehrkomplex bilden. Die große Überraschung: Fällt das VAMP-Protein aus, kann es durch ein chemisch ähnlich gebautes „Ersatz-VAMP“ ausgetauscht werden. „Das ist ein zusätzlicher, bisher unbekannter Zellmechanismus“, sagt Chian Kwon

Die beiden austauschbaren VAMP-Proteine erfüllen wichtige Funktionen in einem weiteren Prozess, der das Wachstum von Pflanzenzellen steuert. Offenbar benutzt die Zelle die gleichen Vesikel, in deren Hülle VAMP-Proteine sitzen, für zwei unterschiedliche Zwecke: zum einen für die normalen Transportwege während der Zellstreckung und zum anderen, im Falle des Angriffs von Krankheitserregern, für eine gezielte Abwehr. „Wahrscheinlich wird nur die Fracht der Vesikel für die Abwehrreaktion ausgetauscht“, so der Biologe.

Interessanterweise kann man SNARE-Proteine auch bei Tieren finden, wo sie ganz ähnliche Aufgaben bei der Steuerung des Vesikeltransports zu erfüllen haben. Dass sich Tier und Pflanze in diesem grundlegenden Abwehrmechanismus so ähnlich sind, überraschte die Forscher am meisten. Sie erwarten, dass man in Zukunft noch weitere Parallelen zwischen dem Immunsystem von Tier und Pflanze finden wird.

Originalveröffentlichung:

Chian Kwon, Christina Neu, Simone Pajonk, Hye Sup Yun, Ulrike Lipka, Matt Humphry, Stefan Bau, Marco Straus, Mark Kwaaitaal, Heike Rampelt, Farid El Kasmi, Gerd Jürgens, Jane Parker, Ralph Panstruga, Volker Lipka, and Paul Schulze-Lefert
Co-option of a default secretory pathway for plant immune responses
Nature, DOI 10.1038/nature06545 (2008)

Media Contact

Dr. Bernd Wirsing Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer