Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Beladung von Immunzellen mit Tumorantigenen in vivo

13.02.2008
In konventionellen biologischen Tumor Therapien werden dendritische Zellen (DCs) ex vivo aus Monozyten generiert, mit Tumorantigen beladen und Patienten wieder re-infundiert. Die Hoffnung bei einer solchen Therapie besteht darin, dass DCs die in vitro sehr potente anti-Tumorantworten auslösen können, auch in vivo zu einem "Priming" (Aktivierung) von zytotoxischen Zellen beitragen können.
Trotz einiger bescheidener Erfolge wird eine solche Therapie durch zahlreiche Hemmnisse erschwert.

Zum einen müssen sehr komplexe zellbiologische Verfahren angewendet werden, um DCs ex vivo unter GMP Bedingungen zu generieren, zum anderen erreichen nach der Injektion nur sehr wenige der mit Tumorantigen beladenen DCs entsprechende regionäre Lymphknoten (5%).

Nur hier können sie eine potente T-Zell-Antwort induzieren. Aufgrund dieser Limitationen wäre es besser die DCs in situ, also im Körper eines Tumorpatienten mit Tumorantigenen zu beladen. Diesen Ansatz verfolgen wir mit dem so genannten Antigen-Targeting mittels alphaDEC.

alphaDEC ist ein Antikörper, der an DCs bindet und dann internalisiert wird. Unser Ziel ist es nun also ein Tumorantigen an diese Antikörper zu koppeln und zu injizieren. Diese Antikörper-Antigen-Konjugate binden dann spezifisch an DCs im Körper und nehmen das gekoppelte Antigen quasi Huckepack mit in die DCs. Hier werden Antikörper und Antigen gespalten und das Antigen wird von den DCs präsentiert. Das sollte dann zu einer starken Aktivierung von T-Zellen führen und so tumorspezifische T-Zellen induzieren.

... mehr zu:
»Antigen »Antikörper »Tumorantigen

Erste Experimente in der Maus waren erfolgreich und wir konnten zeigen, dass B16 Melanome durch Behandlung mit alphaDEC Tumorantigen Konjugaten zur Abstoßung gebracht werden konnten.

Das Verfahren der biochemischen Kopplung ist relativ aufwendig und es lassen sich nicht alle Tumorantigene aufgrund biochemischer Gegebenheiten gut an anti-DEC Antikörper koppeln. Wir haben daher die eigentliche Antigen Bindungsstelle des Antikörpers kloniert und rekombinant in Bakterien exprimiert. Mit Hilfe rekombinanter DNS Technologie können nun Sequenzen, die für alle möglichen Tumorantigen kodieren in einen solchen Vektor einkloniert werden. Aus der Expression eines solchen Fusionsproteins resultiert also eine Chimäre (ScFv), die auf einer Seite die Bindungsdomäne für den DC Rezeptor DEC-205 enthält und auf der anderen Seite das zu transportierende Tumorantigen.

Mit diesen neuartigen im großen Stil einfach herzustellenden Fusionsproteinen wollen wir zunächst im Mausmodell die Effekte auf das Melanomwachstum untersuchen. Später ist es auch geplant initiale Untersuchungen an menschlichen Zellen durchzuführen.

Kontakt: Prof. Dr. A. Enk, Heidelberg
Tel.: +49 (6221) 568500 / Fax: +49 (6221) 565406
e-mail: alexander.enk@med.uni-heidelberg.de
Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit weiteren 80.000 €, nachdem bislang bereits über 140.000 € Fördermittel geflossen sind.

Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Berichte zu: Antigen Antikörper Tumorantigen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics