Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geformtes Licht steuert Photosynthese

31.05.2002


Max-Planck-Forscher steuern Energieausbeute der Photosynthese mit "Melodien" aus Laserlicht


Forscher am Garchinger Max-Planck-Institut für Quantenoptik ist es gelungen, mit speziell geformten ultrakurzen Lichtblitzen die Ausbeute der Photosynthese zu steuern. Mit einer melodienartigen Ordnung der Lichtfarben, die der internen Dynamik eines Moleküls der Photosynthese angepasst wurde, konnten sie den Weg der gesammelten Energie kontrollieren (nature, 30. Mai 2002). Damit weisen sie zudem nach, dass Quantenphänomene auch in biologischen Makromolekülen von Bedeutung sind.


Femtosekunden-Laserpulse sind extrem kurze Lichtblitze (1 fs = 10-15 Sekunden), mit denen man die sehr schnelle Vibration einzelner Moleküle, ihr inneres "Verbiegen und Wackeln", in Echtzeit beobachten kann. Erst 1999 wurde für diese so genannte Femtochemie der Nobelpreis für Chemie verliehen. Verformt man nun zusätzlich die zeitliche Struktur der Laserpulse, so kann man die Dynamik dieser Moleküle gezielt steuern. Die Moleküle lassen sich damit so ‚anfassen’, wie man im Chemie-Unterricht das Plastikmodell eines Moleküls verbiegen kann. Doch ein Lichtfeld, das für eine solche Kontrolle geeignet ist, lässt sich nur für sehr einfache Systeme vorhersagen. Die Forscher am Max-Planck-Institut für Quantenoptik haben deshalb - gemeinsam mit Kollegen der Universität Lund, vom AMOLF in Amsterdam sowie von der Universität Glasgow - ein selbstlernendes Experiment konzipiert, mit dem das optimale Lichtfeld auch für komplexe Moleküle gesucht werden kann Damit ist es ihnen jetzt zum ersten Mal gelungen, einen ultraschnellen biologischen Prozess - die Lichternte, also den ersten Schritt der bakteriellen Photosynthese - erfolgreich zu kontrollieren.


In biologischen Lichternte- bzw. Lichtsammelkomplexen werden die verschiedenen Farben des Lichtspektrums von spezialisierten Molekülen absorbiert und zu einem gemeinsamen Ziel weitergeleitet. In Abb. 1 erfolgt das von den grün-blau absorbierenden länglichen Carotenoiden zum Ring der roten BacterioChlorophyll-Moleküle. Allerdings fließt bei diesem Prozess stets ein Teil der absorbierten Energie in Verlustkanäle (IC) und geht so für die Photosynthese verloren. Den Garchinger Wissenschaftlern ist es gelungen, genau diese Aufspaltung des Energieflusses in zwei Kanäle kohärent zu kontrollieren.

"Abb. 1: Lichtsammel-Komplex: Die absorbierte Energie aus dem grün-blauen Spektrum fließt von den länglichen Carotenoiden zum Ring der roten BacterioChlorophyll-Moleküle (transfer) oder versickert im IC-Verlustkanal. Das Verhältnis der beiden Kanäle kann mit dem geformten Licht gesteuert werden."
"Grafik: Max-Planck-Institut für Quantenoptik"



Doch was versteht man unter "kohärenter Kontrolle"? Während die Sonne das Licht ungeordnet, gewissermaßen wie Dauerlärm, anbietet und ein Laserpuls im Femtosekunden-Bereich wie ein Knall von weniger als einem Millionstel Teil einer Millionstel Sekunde wirkt, haben die Garchinger Wissenschaftler die Farben des Lichts in bestimmte Melodien (Pulsformen) geordnet. Mit einem speziellen Verfahren, dem evolutionären Algorithmus, haben sie dazu aus der Vielzahl vorstellbarer Melodien diejenigen herausgefiltert, die im Lichtsammelkomplex eine Resonanz bewirken: Die verschiedenen Melodien werden zuerst im Computer berechnet, dann mit einem Pulsformer hergestellt und an einem Lichtsammel-Molekül getestet. Nur die erfolgreichsten Melodien werden dann erneut zu einer weiteren Generation von Pulsformen kombiniert, die dann wieder am Lichtsammelkomplex getestet werden, usw.

Auf diese Weise fanden die Forscher Formen von Lichtpulsen, mit denen sie kontrollieren können, wohin die geerntete Energie in einem Molekül fließt. Dabei konnten sie zeigen, dass auch in biologischen Molekülkomplexen, die sich aus Zehntausenden von einzelnen Atomen zusammensetzen, Quantenphänomene wie die Kohärenz eine wichtige Rolle spielen. Denn nicht nur die zeitabhängige Struktur (Amplitude), sondern auch die Phase des Lichtfeldes sind entscheidend für die Kontrolle der inneren Vibration in den Molekülen.

Damit ist es erstmals gelungen, einen auf Licht beruhenden biologischen Vorgang auf der physikalischen Mikroebene gezielt zu beeinflussen. Bisher ist es den Wissenschaftler jedoch nur gelungen, den Anteil an Energie, der in den Verlustkanälen versickert, zu steigern. In weiteren Experimenten wollen sie nun umgekehrt versuchen, mit geformten Licht den Energieanteil, der in die Photosynthese fließt, zu steigern.

"Abb. 2: Evolutionärer Algorithmus: Ein Computer berechnet Lichtpulse (orangefarbene zackenförmige Struktur), die mit einem speziellen optischen Aufbau hergestellt werden (rechts unten): Die schimmernden Gitter und runden Linsen spalten die Farben des Lichts, die dann mit der schwarzen Flüssigkristall-Maske in die gewünschte melodienartige Form gebracht werden. Die geformten Pulse werden an einem Lichtsammel-Komplex getestet (s. Abb. 1). Die Ergebnisse aller getesteten Melodien (Pulsformen) werden im Computer verglichen und immer wieder eine nächste Generation von Pulsformen berechnet, bis eine Resonanz des Lichtsammel-Komplexes eintritt."
"Grafik: Max-Planck-Institut für Quantenoptik"



Doch neben der Möglichkeit, biochemische Reaktionen steuern zu können, eröffnen sich mit dieser Art von Experimenten völlig neue Möglichkeiten, um hochkomplexe Moleküle zu untersuchen. Denn die spezielle Form des Lichtpulses, mit dem ein molekularer Prozess kontrolliert werden kann, ist gleichsam ein "Fingerabdruck" des Moleküls, aus dem viele zusätzliche Informationen gewonnen werden können.

Dr. Bernd Wirsing | Presseinformation
Weitere Informationen:
http://www.mpq.mpg.de/lachem/reaction-dynamics/research/LH2/LH2project.html

Weitere Berichte zu: Max-Planck-Institut Molekül Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie