Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien reinigen Abluft von Formaldehyd

17.09.2000


Technikumanlage des Biorieselbettreaktors

zur biologischen Reinigung formaldehydbelasteter

Abluft


Formaldehyd - eine unserer wichtigsten Chemikalien - kommt bei vielen Prozessen vor allem in der Produktionsabluft vor und stellt dort eine Gefahr für Mensch und Umwelt dar. Fraunhofer-Wissenschaftler haben
jetzt erstmals eine hocheffiziente und kostengünstige Technik entwickelt, mit der sich formaldehydbelastete Abluft biologisch reinigen lässt.

Zur Veredelung von Textilfasern wird es ebenso eingesetzt wie zur Beschichtung von Spanplatten oder zur Herstellung von Kunststoffen: Die Rede ist von Formaldehyd - ohne Zweifel eine unserer wichtigsten Grundchemikalien. So nützlich Formaldehyd auf der einen Seite ist, so schädlich ist es jedoch auf der anderen. Aufgrund seiner Flüchtigkeit kommt es nämlich bei vielen Prozessen vor allem in der Produktionsabluft vor und stellt dort nicht nur eine ernsthafte Umweltbelastung, sondern auch eine Gefahr für den Menschen dar, der die als krebserregend geltende Chemikalie über die Atemwege aufnimmt. Forschern des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, gelang es jetzt, erstmals eine hocheffiziente und kostengünstige Technik für die biologische Reinigung formaldehydbelasteter Abluft zu entwickeln.

Bei der biologischen Abluftreinigung werden in Abluftströmen enthaltene Schadstoffe durch die Stoffwechselaktivität gezielt eingesetzter Mikroorganismen reduziert oder - wie in dem am Fraunhofer IGB entwickelten Verfahren - vollständig entfernt. Das neue Verfahren zur Reinigung
formaldehydbelasteter Abluft basiert auf dem von Wissenschaftlern des IGB isolierten Bakterienstamm Pseudomonas putida J3, der sich durch ungewöhnlich hohe Toleranz gegenüber Formaldehyd und einen hocheffizienten Formaldehydabbau auszeichnet. Zur Abluftreinigung wird der Bakterienstamm in einem sogenannten Bio-Rieselbettreaktor immobilisiert. Als Aufwuchsträger für die Mikroorganismen dient ein inertes Textilmaterial. Das Trägermaterial wird kontinuierlich berieselt, um die Mikroorganismen mit den nötigen Nährstoffen zu versorgen. Von unten wird die zu reinigende Abluft durch den Filter geleitet. Zwischen der durchströmenden Luft und dem Flüssigkeitsfilm, der die Mikroorganismen umschließt, findet ein ständiger Stoffaustausch statt. Die in der Luft enthaltenen Stoffe diffundieren in die Flüssigkeitsschicht und in den Biofilm.

Bei Erprobung der neuen Technologie erzielten die Fraunhofer-Forscher ausgezeichnete Abbauleistungen: So konnte beispielsweise ein Abluftstrom mit einer Formaldehyd-Konzentration von über 1000 ppm auf 10 ppm reduziert werden. Ziel ist nun, das ebenso effiziente wie wirtschaftliche Verfahren so bald wie möglich in den großtechnischen Maßstab umzusetzen.

Ihre Ansprechpartner für weitere Informationen:

Dr. Petra Koziollek
Telefon +49(0)711/970-41 99
E-mail pko@igb.fhg.de

Dr. Dieter Bryniok
Telefon +49(0)711/970-42 11
E-mail bry@igb.fhg.de

Weitere Informationen finden Sie im WWW:

Dr. Claudia Vorbeck |

Weitere Berichte zu: Abluft Abluftreinigung Bakterien Formaldehyd Mikroorganismus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie