Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schadet "Nano" der Gesundheit? Neues DFG-Schwerpunktprogramm

08.02.2008
Ob in Reinigungssprays oder in der Sonnenmilch: Produkte, deren besondere Eigenschaften auf Nanopartikel zurückgehen, haben unseren Alltag erobert. Wie unser Körper auf die besonderen Inhaltsstoffe reagiert, die wegen ihrer Miniaturgröße auch in Zellen und Zellkerne eindringen können, ist bislang nicht bekannt.

Mit der biologischen Wirkung von Nanopartikeln befasst sich deshalb ein neues Schwerpunktprogramm der Deutschen Forschungsgemeinschaft (DFG - SPP1313), das von der Universität Duisburg-Essen (UDE) koordiniert wird.

In dem bundesweiten Forschungsverbund werden die grundlegenden Wechselwirkungen von Nanopartikeln mit biologischen Molekülen und Systemen sowie mit Zellen interdisziplinär erforscht. Mit rund 10 Millionen Euro finanziert die DFG das Programm über einen Zeitraum von sechs Jahren. Der wissenschaftliche Koordinator des Schwerpunktprogramms, Prof. Dr. Dr. h.c. Professor Dr. Reinhard Zellner, bewertet die Zusage so: "Mit der Vergabe dieses Projekts bestätigt die DFG der Universität Duisburg-Essen eine wichtige Position in diesem zukunftsträchtigen Forschungsgebiet." Prof. Zellner leitet das Institut für Physikalische und Theoretische Chemie und ist Vorstandsvorsitzender des Zentrums für Mikroskalige Umweltsysteme (ZMU) an der UDE.

Nanopartikel kommen immer häufiger in Materialien mit innovativen chemischen und physikalischen Eigenschaften vor und lassen ein riesiges Anwendungspotenzial erwarten. Weil Nanopartikel von vergleichbarer Größe wie typische Biomoleküle sind, können sie in Zellen und Zellkerne eindringen und deren Funktionalität negativ beeinflussen. Deshalb zielt das neue Verbundforschungsprojekt an der Universität Duisburg-Essen darauf ab, die biologische Verträglichkeit der neuen Technologie zu überprüfen.

... mehr zu:
»DFG »Nanopartikel »UDE »Zellbiologie

Das interdisziplinäre Verbundprojekt bündelt die derzeit wichtigsten in Deutschland tätigen Arbeitsgruppen der Chemie und Physik von Nanopartikeln sowie der Zellbiologie und Toxikologie, die sich mit der Erzeugung, Charakterisierung und der biologische Wirkung von Nanopartikeln befassen. Insgesamt sind 38 Arbeitsgruppen an dem Forschungsprojekt beteiligt. Professor Zellner ist auf mehreren Ebenen an der Projektdurchführung beteiligt: Neben der Gesamtkoordination des Programms ist seine Arbeitsgruppe auch am Cluster-Projekt "Nano-ag" beteiligt, das unter anderem die größendefinierte Herstellung sowie Charakterisierung und Zellaktivität von Silber-Nanopartikeln umfasst.

Die antibakterielle Wirkung von Silber ist schon seit vielen Jahren bekannt. So werden Silber-Nanopartikel bereits häufig in Handys, Kühlschränken, Kleidungsstücken, Handtüchern und Pflastern angewendet, um sie vor Mikroben zu schützen. Die Grundlagen dieser Wirkung werden im Schwerpunktprogramm von einer interdisziplinären Arbeitsgruppe untersucht, zu der neben Zellner auch der Anorganiker Prof. Matthias Epple (Duisburg-Essen) und der Zellbiologe Prof. Manfred Köller (Bochum) gehören. Am 14. und 15. Februar werden sich alle beteiligten Forscher zum einem Kick-off Meeting in Fulda treffen.

Redaktion: Beate H. Kostka, Tel. 0203/379-2430
Weitere Informationen: Prof. Dr. Reinhard Zellner, Tel. 0201/183-3073, r.zellner@uni-due.de, www.spp1313.de

Beate Kostka | idw
Weitere Informationen:
http://www.spp1313.de
http://www.uni-duisburg-essen.de/

Weitere Berichte zu: DFG Nanopartikel UDE Zellbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics