Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zellen Stress bewältigen

07.02.2008
Wissenschaftler der Technischen Universität München (TUM) haben einen Mechanismus entdeckt, der Zellen dabei hilft, ihre Proteine vor Hitzeschäden zu schützen. Die renommierte Fachzeitschrift Molecular Cell berichtet in ihrer neuesten Ausgabe über die Ergebnisse der Studie.

Auch Zellen kennen Stress. Chemische Einflüsse oder hohe Temperaturen können die fein ausbalancierten innerzellulären Prozesse aus dem Takt bringen - empfindliche Proteine können ihre fragile dreidimensional gefaltete Struktur verlieren oder gar miteinander zu Aggregaten verklumpen.

Erste Hilfe leisten Hitzeschockproteine (Hsps). Sie bewahren andere Proteine vor dem Verklumpen oder bringen sie notfalls wieder in die korrekte Form. Wo diese "zellulären Sanitäter" ihre Aufgabe nicht wahrnehmen können, werden Krankheiten wie Alzheimer oder das Creutzfeld-Jakob-Syndrom begünstigt. Angesichts der Bedeutung der Hsps auch in Hinsicht auf solche Krankheiten ist ein möglichst umfassendes Verständnis ihrer Arbeit und Regulation wünschenswert.

Die TUM-Wissenschaftler um Professor Johannes Buchner vom Lehrstuhl für Biotechnologie untersuchten am Beispiel der Bäckerhefe das Hitzeschockprotein Hsp26. Bei diesem Protein hatten sie eine besondere Eigenheit entdeckt: In der Hefe nimmt es Hitzestress autonom wahr. Bei normalen Temperaturen ist es nicht aktiv, schaltet sich aber bei Hitze selbstständig ein und entfaltet blitzschnell seine Schutzwirkung. Dies zeigten Versuche bei verschiedenen Temperaturen. Lässt man ein Testprotein bei 25°C verklumpen, so zeigt das nicht aktivierte Hsp26 keinen Effekt. Erhöht man die Temperatur aber für nur zehn Sekunden auf 36°C, dann bewahrt Hsp26 schon die Hälfte des Testproteins vor dem Verklumpen. Und nach fünf Minuten bei Hitzestress bleibt das Testprotein in Gegenwart von Hsp26 zu 100 Prozent intakt.

... mehr zu:
»Protein

Welcher Mechanismus dem zugrunde liegt, haben die TUM-Biotechnologen jetzt herausgefunden. Das Aktivierungssignal ist eine temperaturabhängige Umlagerung innerhalb des Hsp26-Moleküls. Die Forscher konnten sogar den exakten Ort dieses molekularen Temperatursensors lokalisieren - eine als Mitteldomäne bezeichnete Region. Und sie wiesen nach, dass der Sensor in einem engen Temperaturbereich zwei Stellungen einnehmen kann: inaktiv und aktiv. Die Struktur der Mitteldomäne bestimmt, ob und wann Hsp26 aktiv wird und seine Schutzfunktion wahrnimmt. Das hier entdeckte Prinzip, eine Temperaturänderung in eine molekulare Strukturänderung umzusetzen, könnte auch für die Nano-Biotechnologie von Interesse sein.

Kontakt:
Prof. Dr. Johannes Buchner
Lehrstuhl Biotechnologie
Department Chemie
Technische Universität München
Lichtenbergstr. 4
85747 Garching
Email: johannes.buchner@ch.tum.de
Tel: 089 289 13340
FAX: 089 289 13345

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tu-muenchen.de/

Weitere Berichte zu: Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie