Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zellen Stress bewältigen

07.02.2008
Wissenschaftler der Technischen Universität München (TUM) haben einen Mechanismus entdeckt, der Zellen dabei hilft, ihre Proteine vor Hitzeschäden zu schützen. Die renommierte Fachzeitschrift Molecular Cell berichtet in ihrer neuesten Ausgabe über die Ergebnisse der Studie.

Auch Zellen kennen Stress. Chemische Einflüsse oder hohe Temperaturen können die fein ausbalancierten innerzellulären Prozesse aus dem Takt bringen - empfindliche Proteine können ihre fragile dreidimensional gefaltete Struktur verlieren oder gar miteinander zu Aggregaten verklumpen.

Erste Hilfe leisten Hitzeschockproteine (Hsps). Sie bewahren andere Proteine vor dem Verklumpen oder bringen sie notfalls wieder in die korrekte Form. Wo diese "zellulären Sanitäter" ihre Aufgabe nicht wahrnehmen können, werden Krankheiten wie Alzheimer oder das Creutzfeld-Jakob-Syndrom begünstigt. Angesichts der Bedeutung der Hsps auch in Hinsicht auf solche Krankheiten ist ein möglichst umfassendes Verständnis ihrer Arbeit und Regulation wünschenswert.

Die TUM-Wissenschaftler um Professor Johannes Buchner vom Lehrstuhl für Biotechnologie untersuchten am Beispiel der Bäckerhefe das Hitzeschockprotein Hsp26. Bei diesem Protein hatten sie eine besondere Eigenheit entdeckt: In der Hefe nimmt es Hitzestress autonom wahr. Bei normalen Temperaturen ist es nicht aktiv, schaltet sich aber bei Hitze selbstständig ein und entfaltet blitzschnell seine Schutzwirkung. Dies zeigten Versuche bei verschiedenen Temperaturen. Lässt man ein Testprotein bei 25°C verklumpen, so zeigt das nicht aktivierte Hsp26 keinen Effekt. Erhöht man die Temperatur aber für nur zehn Sekunden auf 36°C, dann bewahrt Hsp26 schon die Hälfte des Testproteins vor dem Verklumpen. Und nach fünf Minuten bei Hitzestress bleibt das Testprotein in Gegenwart von Hsp26 zu 100 Prozent intakt.

... mehr zu:
»Protein

Welcher Mechanismus dem zugrunde liegt, haben die TUM-Biotechnologen jetzt herausgefunden. Das Aktivierungssignal ist eine temperaturabhängige Umlagerung innerhalb des Hsp26-Moleküls. Die Forscher konnten sogar den exakten Ort dieses molekularen Temperatursensors lokalisieren - eine als Mitteldomäne bezeichnete Region. Und sie wiesen nach, dass der Sensor in einem engen Temperaturbereich zwei Stellungen einnehmen kann: inaktiv und aktiv. Die Struktur der Mitteldomäne bestimmt, ob und wann Hsp26 aktiv wird und seine Schutzfunktion wahrnimmt. Das hier entdeckte Prinzip, eine Temperaturänderung in eine molekulare Strukturänderung umzusetzen, könnte auch für die Nano-Biotechnologie von Interesse sein.

Kontakt:
Prof. Dr. Johannes Buchner
Lehrstuhl Biotechnologie
Department Chemie
Technische Universität München
Lichtenbergstr. 4
85747 Garching
Email: johannes.buchner@ch.tum.de
Tel: 089 289 13340
FAX: 089 289 13345

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tu-muenchen.de/

Weitere Berichte zu: Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten