Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher simulieren Dinoverdauung im Labor

06.02.2008
Wissenschaftler der Universität Bonn untersuchen, von welchen Pflanzen sich Riesendinosaurier vor mehr 100 Millionen Jahren ernährt haben könnten.

Sie wollen herausfinden, wie die Giganten überhaupt so groß werden konnten: Eigentlich hätte es so gewaltige Tiere gar nicht geben dürfen. Die Studie ist nun in der Zeitschrift "Proceedings of the Royal Society B" erschienen.

Man nehme: 200 Milligramm getrocknete und zermahlene Schachtelhalme, zehn Milliliter Verdauungssaft aus dem Schafpansen, ein paar Mineralstoffe, Karbonat und Wasser. Den Mix fülle man in eine große Glasspritze, klemme diese in eine drehbare Trommel und stelle das Ganze in einen Wärmeschrank, wo der Sud langsam vor sich hinrotieren kann: Fertig ist der künstliche "Saurier-Pansen".

Mit dieser Vorrichtung (als Hohenheimer Futterwerttest auch bei der Bewertung von Futter für Kühe eingesetzt) untersucht Dr. Jürgen Hummel vom Bonner Institut für Tierwissenschaften, von welchen Pflanzen sich Riesendinosaurier vor mehr als 100 Millionen Jahren ernährt haben könnten. Denn das ist eines der Puzzlestücke, die in unserem Bild von den größten jemals auf der Erde wandelnden Landtieren noch fehlen. Die gewaltigsten der sogenannten "sauropoden Dinosaurier" brachten mit 70 bis 100 Tonnen soviel Masse auf die Waage wie zehn ausgewachsene Elefanten oder gut 1.000 Durchschnittsdeutsche.

Größer als erlaubt

Wie die Tiere überhaupt so groß werden konnten, beschäftigt Wissenschaftler aus Deutschland und der Schweiz. Koordinator der Forschergruppe "Biology of the Sauropod Dinosaurs: The Evolution of Gigantism" ist der Bonner Paläontologe Professor Dr. Martin Sander. "Es gibt ein Gesetz, an das sich die meisten heute lebenden Tiere halten", sagt er: "Je größer ein Tier, desto geringer die Populationsdichte, desto weniger Artgenossen gibt es also pro Quadratkilometer." Je größer ein Tier, desto mehr Nahrung muss es nämlich zu sich nehmen, um zu überleben. Ein Gebiet ernährt daher nur eine bestimmte Maximalmenge von Tieren.

Gleichzeitig gibt es aber eine Untergrenze für die Populationsdichte. Wird sie unterschritten, stirbt die Art aus: "Krankheiten können dann schnell den kompletten Bestand ausrotten; zudem wird es schwierig, einen Geschlechtspartner zu finden", erklärt Sander. Ein 100-Tonner wie Argentinosaurus dürfte diese "Minimal-Populationsdichte" normalerweise gar nicht erreicht haben - eigentlich hätte es ihn nicht geben dürfen. Es gibt aber Erklärungsansätze für dieses scheinbare Paradoxon: Beispielsweise hatten Riesendinos vermutlich einen Stoffwechsel, der niedriger als der von Säugetieren war. Unklar ist dabei, wie energiereich ihre Futterpflanzen waren.

Diese Frage untersucht Dr. Jürgen Hummel zusammen mit Dr. Marcus Clauss von der Universität Zürich. "Wir nehmen an, dass die pflanzenfressenden Dinosaurier eine Art Gärbehälter gehabt haben müssen, ähnlich wie heute der Pansen in Kühen." Fast alle Vegetarier im Tierreich verdauen so mit Hilfe von Bakterien ihre Nahrung. Ausnahme ist der Pandabär. Entsprechend ineffizient ist seine Verdauung: Er muss den lieben langen Tag Bambus-Blätter in sich hineinschaufeln, um seinen Energiebedarf zu decken - und das, obwohl er sich wenig bewegt und so Energie spart.

Hummel funktioniert für seine Laborexperimente Glasspritzen zu einfachen Gärbehältern um, die er mit Bakterien aus dem Schafpansen füllt. "Diese Mikroorganismen sind evolutiv gesehen sehr alt; wir können daher davon ausgehen, dass es sie schon früher gegeben hat", erklärt er. Zu dem Bakterienmix gibt er getrocknete und zermahlene Futterpflanzen: Gras, Laub oder Kräuter, die Tieren heute als Nahrung dienen, und zum Vergleich Schachtelhalm, Zimmertanne oder Ginkgo-Blätter - also Bestandteile von Pflanzen, die bereits seit über 200 Millionen Jahren auf der Erde wachsen. Das bei der Gärung entstehende Gas drückt die Kolben aus den Spritzen. Auf deren Skalen kann Hummel daher direkt den Gärerfolg ablesen. Dabei gilt die einfache Regel: Je mehr Gas, desto "hochwertiger" das Futter.

Schachtelhalme sind schlecht für die Zähne

Die "alten" Pflanzen schlagen sich im Vergleich zur heutigen Flora erstaunlich gut. "So riesig, wie man erwarten könnte, ist der Unterschied gar nicht", betont der Wissenschaftler. Die Bakterien verwerten Ginkgo sogar besser als Laub. Am liebsten scheinen ihnen aber Schachtelhalme zu sein: Bei denen ist die Gasproduktion sogar höher als bei manchen Gräsern. Dennoch dient der Schachtelhalm heute vergleichsweise wenigen Tieren als Futter. Der Grund dafür ist, neben den in vielen heutigen Arten enthaltenen Giftstoffen, dass er die Zähne zu sehr abnutzt: "Schachtelhalme enthalten sehr viel Silikat", sagt Hummel. "Das wirkt wie Schmirgelpapier."

Viele Riesendinosaurier hatten aber gar keine Mahlzähne: Sie rupften ihre Nahrung einfach aus und schlangen sie herunter. Die mechanische Zerkleinerung übernahm eventuell eine "Magenmühle": Ähnlich wie heutige Vögel könnten die Dinos Steine geschluckt haben, mit denen sie in ihrem muskulösen Magen den Nahrungsbrei zerrieben. Gute Hinweise darauf gibt es aber nicht: Erst kürzlich hat der Bonner Paläontologe Dr. Oliver Wings angezweifelt, dass Saurier Magensteine hatten - anhand fossiler Funde lasse sich die Annahme jedenfalls nicht belegen.

Kontakt:
Dr. Jürgen Hummel
Institut für Tierwissenschaften der Universität Bonn
Telefon: 0228/73-2281
E-Mail: Jhum@itw.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Bakterie Nahrung Riesendinosaurier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie