Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlangen orten Beute über Vibrationswellen

30.01.2008
Biophysiker von TU München und Bernstein Zentrum für Computational Neuroscience publizieren in Physical Review Letters

Das Vorurteil, Schlangen seien taub, ist weit verbreitet - was wohl daran liegt, dass sie keine von außen sichtbaren Ohren haben und es nur wenig wissenschaftliche Indizien dafür gibt, dass sie hören können. Nichtsdestotrotz haben Schlangen ein Innenohr mit einer funktionsfähigen Hörschnecke (Cochlea).


Copyright 2002: R.D.L. Mastenbroek & Dexter Bressers

In einem aktuellen Artikel der Zeitschrift Physical Review Letters zeigen Wissenschaftler der Technischen Universität München (TUM) und des Bernstein Zentrums für Computational Neuroscience (BCCN), dass Schlangen dieses Organ nutzen können, um kleinste Vibrationen der Sandoberfläche wahrzunehmen, die durch die Bewegung von Beutetieren verursacht werden. Ihre Ohren sind so empfindlich, dass sie die Beute nicht nur kommen "hören", sondern auch unterscheiden können, aus welcher Richtung sie sich nähert. Die Arbeit wurde von Prof. J. Leo van Hemmen und Paul Friedel, Biophysiker an der TUM und dem BCCN, zusammen mit ihrem Kollegen Bruce Young von der Washburn University in Topeka (Kansas, USA) durchgeführt.

Jede Erschütterung auf einer sandigen Oberfläche verursacht Vibrationswellen, die sich von der Quelle aus auf der Oberfläche ausbreiten - so wie Wellen in einem Teich, nachdem ein Stein hineingeworfen wurde. Die Sandwellen breiten sich allerdings mit einer Geschwindigkeit von etwa 50 Metern pro Sekunde viel schneller aus als Wasserwellen und ihre Amplitude beträgt nur wenige tausendstel Millimeter. Dennoch kann eine Schlange diese winzigen Wellen wahrnehmen. Wenn sie ihren Kopf auf den Sand legt, werden die beiden Hälften des Unterkiefers durch die eintreffende Welle in Schwingung gebracht. Diese Schwingungen werden dann über eine Reihe von Knochen, die mit dem Unterkiefer verbunden sind, ins Innenohr übertragen. Dieser Prozess ist vergleichbar mit der Weiterleitung akustischer Signale durch die Hörknöchelchen im menschlichen Mittelohr. Die Schlange hört also im wahrsten Sinne des Wortes die Oberflächenwellen.

Säugetiere und Vögel können Geräusche orten, indem sie die zeitliche Verzögerung messen, mit der eine Schallwelle die beiden Ohren erreicht. Geräusche, die von rechts kommen, erreichen das rechte Ohr einen Bruchteil einer Sekunde früher als das linke. Für Geräusche, die von links kommen, ist das Umgekehrte der Fall. Aus dieser Zeitdifferenz berechnet das Gehirn, aus welcher Richtung ein Signal kommt.

Durch eine Kombination von Forschungsansätzen aus der Biomechanik, der Schiffsbautechnik und der Modellierung neuronaler Schaltkreise haben Friedel und seine Kollegen gezeigt, dass Schlangen mit ihrem ungewöhnlichen Hörsystem dieses Kunststück ebenfalls beherrschen. Die linke und rechte Hälfte des Unterkiefers einer Schlange hängen nämlich nicht starr zusammen. Vielmehr sind sie durch flexible Bänder miteinander verknüpft, die es der Schlange ermöglichen, ihr Maul enorm weit zu öffnen, um auch große Beutetiere zu verschlingen. Beide Hälften des Unterkiefers können sich so unabhängig voneinander bewegen. Legt die Schlange den Kopf auf den Boden, schaukeln sie ähnlich zwei einzelnen Boote auf einem See aus Sand und ermöglichen so das Hören in Stereo.

Eine Sandwelle, die von rechts kommt, wird die rechte Hälfte des Unterkiefers minimal früher erreichen, als die linke Seite und umgekehrt. Mit Hilfe mathematischer Modelle haben die Wissenschaftler die Bewegung des Unterkiefers in Antwort auf die eintreffende Oberflächenwelle berechnet. Sie konnten zeigen, dass der kleine Unterschied in der Ankunftszeit einer Welle zwischen dem rechten und dem linken Ohr ausreicht, der Schlange ein Richtungshören zu ermöglichen. Die neuronale Verschaltung des Gehirns erlaubt es ihr zu berechnen, aus welcher Richtung ein Geräusch kommt.

Die außergewöhnliche Beweglichkeit des Unterkiefers der Schlange ist in der Evolution entstanden, weil die Fähigkeit der Schlange, auf diese Weise sehr große Beutetiere verschlingen zu können, einen großen evolutionären Vorteil bietet, wenn Futterressourcen knapp sind und die Konkurrenz hart ist. Erst durch die Trennung der Unterkieferhälften wurde es möglich, auch diese besondere Form des Hörens hervorzubringen.

Originalveröffentlichung:
Paul Friedel, Bruce A. Young, and J. Leo van Hemmen.
Auditory localization of ground-borne vibrations in snakes
Physical Review Letters 100, 048701 (2008)
doi: 10.1103/PhysRevLett.100.048701
Kontakt:
Paul Friedel
Physik Department T35, TU München
Garching bei München, Germany
pfriedel@ph.tum.de
+49 89 289 12193
Prof. J. Leo van Hemmen
Physik Department T35, TU München
Garching bei München, Germany
lvh@tum.de
+49 89 289 12362
Prof. Bruce A. Young
Department of Biology
Washburn University
Topeka, KS 66621, USA
bruce.young@washburn.edu
+1 785 670 2166
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.

Katrin Weigmann | idw
Weitere Informationen:
http://www.t35.ph.tum.de/
http://www.bernstein-zentren.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie