Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlangen orten Beute über Vibrationswellen

30.01.2008
Biophysiker von TU München und Bernstein Zentrum für Computational Neuroscience publizieren in Physical Review Letters

Das Vorurteil, Schlangen seien taub, ist weit verbreitet - was wohl daran liegt, dass sie keine von außen sichtbaren Ohren haben und es nur wenig wissenschaftliche Indizien dafür gibt, dass sie hören können. Nichtsdestotrotz haben Schlangen ein Innenohr mit einer funktionsfähigen Hörschnecke (Cochlea).


Copyright 2002: R.D.L. Mastenbroek & Dexter Bressers

In einem aktuellen Artikel der Zeitschrift Physical Review Letters zeigen Wissenschaftler der Technischen Universität München (TUM) und des Bernstein Zentrums für Computational Neuroscience (BCCN), dass Schlangen dieses Organ nutzen können, um kleinste Vibrationen der Sandoberfläche wahrzunehmen, die durch die Bewegung von Beutetieren verursacht werden. Ihre Ohren sind so empfindlich, dass sie die Beute nicht nur kommen "hören", sondern auch unterscheiden können, aus welcher Richtung sie sich nähert. Die Arbeit wurde von Prof. J. Leo van Hemmen und Paul Friedel, Biophysiker an der TUM und dem BCCN, zusammen mit ihrem Kollegen Bruce Young von der Washburn University in Topeka (Kansas, USA) durchgeführt.

Jede Erschütterung auf einer sandigen Oberfläche verursacht Vibrationswellen, die sich von der Quelle aus auf der Oberfläche ausbreiten - so wie Wellen in einem Teich, nachdem ein Stein hineingeworfen wurde. Die Sandwellen breiten sich allerdings mit einer Geschwindigkeit von etwa 50 Metern pro Sekunde viel schneller aus als Wasserwellen und ihre Amplitude beträgt nur wenige tausendstel Millimeter. Dennoch kann eine Schlange diese winzigen Wellen wahrnehmen. Wenn sie ihren Kopf auf den Sand legt, werden die beiden Hälften des Unterkiefers durch die eintreffende Welle in Schwingung gebracht. Diese Schwingungen werden dann über eine Reihe von Knochen, die mit dem Unterkiefer verbunden sind, ins Innenohr übertragen. Dieser Prozess ist vergleichbar mit der Weiterleitung akustischer Signale durch die Hörknöchelchen im menschlichen Mittelohr. Die Schlange hört also im wahrsten Sinne des Wortes die Oberflächenwellen.

Säugetiere und Vögel können Geräusche orten, indem sie die zeitliche Verzögerung messen, mit der eine Schallwelle die beiden Ohren erreicht. Geräusche, die von rechts kommen, erreichen das rechte Ohr einen Bruchteil einer Sekunde früher als das linke. Für Geräusche, die von links kommen, ist das Umgekehrte der Fall. Aus dieser Zeitdifferenz berechnet das Gehirn, aus welcher Richtung ein Signal kommt.

Durch eine Kombination von Forschungsansätzen aus der Biomechanik, der Schiffsbautechnik und der Modellierung neuronaler Schaltkreise haben Friedel und seine Kollegen gezeigt, dass Schlangen mit ihrem ungewöhnlichen Hörsystem dieses Kunststück ebenfalls beherrschen. Die linke und rechte Hälfte des Unterkiefers einer Schlange hängen nämlich nicht starr zusammen. Vielmehr sind sie durch flexible Bänder miteinander verknüpft, die es der Schlange ermöglichen, ihr Maul enorm weit zu öffnen, um auch große Beutetiere zu verschlingen. Beide Hälften des Unterkiefers können sich so unabhängig voneinander bewegen. Legt die Schlange den Kopf auf den Boden, schaukeln sie ähnlich zwei einzelnen Boote auf einem See aus Sand und ermöglichen so das Hören in Stereo.

Eine Sandwelle, die von rechts kommt, wird die rechte Hälfte des Unterkiefers minimal früher erreichen, als die linke Seite und umgekehrt. Mit Hilfe mathematischer Modelle haben die Wissenschaftler die Bewegung des Unterkiefers in Antwort auf die eintreffende Oberflächenwelle berechnet. Sie konnten zeigen, dass der kleine Unterschied in der Ankunftszeit einer Welle zwischen dem rechten und dem linken Ohr ausreicht, der Schlange ein Richtungshören zu ermöglichen. Die neuronale Verschaltung des Gehirns erlaubt es ihr zu berechnen, aus welcher Richtung ein Geräusch kommt.

Die außergewöhnliche Beweglichkeit des Unterkiefers der Schlange ist in der Evolution entstanden, weil die Fähigkeit der Schlange, auf diese Weise sehr große Beutetiere verschlingen zu können, einen großen evolutionären Vorteil bietet, wenn Futterressourcen knapp sind und die Konkurrenz hart ist. Erst durch die Trennung der Unterkieferhälften wurde es möglich, auch diese besondere Form des Hörens hervorzubringen.

Originalveröffentlichung:
Paul Friedel, Bruce A. Young, and J. Leo van Hemmen.
Auditory localization of ground-borne vibrations in snakes
Physical Review Letters 100, 048701 (2008)
doi: 10.1103/PhysRevLett.100.048701
Kontakt:
Paul Friedel
Physik Department T35, TU München
Garching bei München, Germany
pfriedel@ph.tum.de
+49 89 289 12193
Prof. J. Leo van Hemmen
Physik Department T35, TU München
Garching bei München, Germany
lvh@tum.de
+49 89 289 12362
Prof. Bruce A. Young
Department of Biology
Washburn University
Topeka, KS 66621, USA
bruce.young@washburn.edu
+1 785 670 2166
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.

Katrin Weigmann | idw
Weitere Informationen:
http://www.t35.ph.tum.de/
http://www.bernstein-zentren.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie