Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elastizität von Zellbausteinen erklärt - Grundlagen für Biomaschinen

17.01.2008
Sie spielen für viele Zellfunktionen eine wichtige Rolle: Mikrotubuli, stabförmige Zellbausteine. Ihr elastisches Verhalten können Wissenschaftler der Ludwig-Maximilians-Universität (LMU) München, der University of Texas und des European Molecular Biology Laboratory in Heidelberg jetzt physikalisch erklären.

Das gelang den Forschern, zu denen auch Professor Erwin Frey vom Department für Physik der LMU gehört, mit einer Kombination aus eleganten Einzelmolekülexperimenten und einem neuen theoretischen Modell, das den molekularen Aufbau der Strukturen berücksichtigt. Die Ergebnisse, die auch für die Entwicklung biologischer Maschinen bedeutsam sein können, wurden in der aktuellen Ausgabe von "Physical Review Letters" veröffentlicht.

Mikrotubuli sind stabförmige Proteinbausteine des Zytoskeletts, also des Grundgerüsts biologischer Zellen. Sie kommen in verschiedenen Größen und Architekturen vor und spielen eine entscheidende Rolle für viele Zellfunktionen. Als molekulare Zugseile sind sie bei der Zellteilung von großer Bedeutung und dienen gleichzeitig als molekulare Schienen dem Transport von Substanzen.

Um die Funktionsweise dieser Strukturen zu erklären, ist das Verständnis ihrer elastischen Eigenschaften unabdingbar. Bisher wurde dafür ein Modell verwendet, bei dem man von homogenen, isotropen Stäben ausgeht, die einzig und allein durch ihre Biegefestigkeit charakterisiert werden. Man spricht vom "Wormlike Chain"-Modell, auf deutsch etwa: "wurmartige Kette". Der theoretische Physiker Professor Erwin Frey hat nun zusammen mit Kollegen von der University of Texas und dem "European Molecular Biology Laboratory" in Heidelberg gezeigt, dass dieses Standardmodell das elastische Verhalten von Mikrotubuli nicht ausreichend erklärt. So kann man beobachten, dass längere Stäbe steifer sind als kurze, was nicht mit dem "Wormlike Chain"-Modell zu beschreiben ist. Den Wissenschaftlern gelang nun die Entwicklung eines neuen Modells, das die molekulare Struktur der Mikrotubuli berücksichtigt.

... mehr zu:
»Mikrotubulus
In Wirklichkeit handelt es sich dabei nämlich um Röhren mit einem Durchmesser von etwa 25 Nanometern, die ihrerseits aus kleinen parallel angeordneten Stangen gebildet werden, so genannten Protofilamenten, die sich gegeneinander verschieben lassen. Zwischen diesen aus winzigen kugelförmigen Proteinen bestehenden Stangen treten molekulare Reibungs- und Federkräfte auf. Eine Verbiegung solcher Strukturen kann man sich in etwa wie das Biegen eines Buches vorstellen, bei dem die Seiten aneinander entlang gleiten.

Zur Beschreibung der elastischen Eigenschaften solcher hierarchischer molekularer Architekturen haben Frey und seine Mitarbeiter Heussinger und Bathe eine neue vereinheitlichte Theorie der "Wormlike Bundles" entwickelt, bei der die Reibungs- und Federkräfte berücksichtigt werden. Mikrotubuli repräsentieren dabei nur eine Variante aus einer breiten Klasse bündelartiger Strukturen, die sich mit der Theorie beschreiben lassen, zum Beispiel auch Kohlenstoff-Nanoröhren.

Die Wissenschaftler haben zur Überprüfung ihrer Theorie im Labor die thermischen Fluktuationen von Mikrotubuli analysiert. Dazu haben sie diese mit Fluoreszenzmarkern versehen und anschließend die Marker unter dem Mikroskop beobachtet. Aus dem gemittelten Versatz beim Verbiegen konnte die Relaxationszeit berechnet werden, also die Zeit bis zur Rückkehr in die Ausgangslage - eine wichtige Kenngröße der elastischen Eigenschaften. Bei kurzen Mikrotubuli mit einer Länge L unter zehn Mikrometern stieg die Relaxationszeit quadratisch mit L an. Nach dem bisher verwendeten "Wormlike Chain"-Modell erwartet man aber eine Proportionalität zur vierten Potenz der Länge. Die quadratische Abhängigkeit kann nur mit dem neuen "Wormlike Bundle"-Modell erklärt werden. Bei noch kleineren Mikrotubuli kürzer als 5 Mikrometer lassen die Messergebnisse darauf schließen, dass innere Reibung zusätzliche Beiträge zur Fluktuationsdynamik liefert.

Die in der aktuellen Ausgabe von "Physical Review Letters" veröffentlichten Ergebnisse zeigen, dass sich unter Einbeziehung der molekularen Architektur die Elastizitäts-Eigenschaften von semiflexiblen Polymeren mit Protofilament-Struktur physikalisch erklären lassen. Diese Erkenntnisse bilden auch eine Grundlage für die Konzeption und den Bau künstlicher biologischer Maschinen. So hängt die Funktionsweise von biologischen Schaltern oder Transportmechanismen in hohem Maße mit den elastischen Eigenschaften der verwendeten Grundbausteine zusammen. Die Anwendung der Theorie auf Kohlenstoff-Nanoröhren liefert zudem einen wichtigen Beitrag für die Forschungsarbeiten an diesen vielversprechenden neuen Materialien.

Die vorgestellten Arbeiten entstanden im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich", das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen.

Veröffentlichung:
Microtubule dynamics depart from the wormlike chain model, K. Taute, F. Pampaloni, E. Frey, and E.-L. Forin, Phys. Rev. Lett. [q-bio.BM/0708.1928]
Ansprechpartner:
Prof. Dr. Erwin Frey
Ludwig-Maximilians-Universität München
Fakultät für Physik
Tel.: 089 / 2180 4538
E-Mail: frey@lmu.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Presse- und Öffentlichkeitsarbeit
Tel.: 089 / 2180 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Mikrotubulus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie