Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologisches Werkzeug für Kohlenstoff-Nanoröhrchen

15.01.2008
In der Biologie ist das Schlüssel-Schloss-Prinzip weit verbreitet. Dresdner Forscher nutzen dieses Prinzip, indem sie einzelne DNA-Stränge als Werkzeug zum Sortieren von Kohlenstoff-Nanoröhrchen einsetzen.

Das neue Hybrid-Material ist ein Schritt hin zu einem elektronischen Nano-Bauelement. Hierzu erschienen bereits Artikel, die in der Fachwelt Aufsehen erregten (z.B. in den Fachjournalen "European Physical Journal" und "Nanotechnology").

In der DNA sind die Erbinformationen durch die Aufeinanderfolge einzelner Eiweißstoffe gespeichert. Sie sieht aus wie eine gedoppelte Wendeltreppe. Entfernt man einen Strang, so bietet die offene Wendeltreppe eine lange Kette winzigkleiner Schlüssel, die regelmäßig um einen röhrenförmigen Hohlraum angeordnet sind.

Ein Forscherteam von der Technischen Universität Dresden (TUD) und vom Forschungszentrum Dresden-Rossendorf (FZD) benötigt für die Entwicklung eines neuartigen Nano-Bauelements Kohlenstoff-Nanoröhren mit wohldefinierten Eigenschaften. Diese Röhrchen mit nur einigen Nanometern Durchmesser entstehen nicht zuletzt beim Grillen im Garten. Im industriellen Herstellungsprozess ist es - genauso wie beim Grillen - bisher nicht möglich, größere Mengen an Röhrchen einer bestimmten Größe sortenrein herzustellen. Man erhält vielmehr ein Gemisch aus halbleitenden und metallischen Sorten mit unterschiedlichen Strukturen. Hieraus nur die gewünschte Sorte herauszufiltern, ist schwierig, weil die Röhrchen zu Bündeln zusammenkleben, die nahezu unlöslich sind.

... mehr zu:
»DNA-Kette »FZD »TUD »Transistor

Wissenschaftler der TUD griffen die Idee auf, DNA-Ketten zur Aussonderung von Nanoröhrchen aus dem unlöslichen Gemisch zu nutzen. Die Größenordnung der offenen DNA-Wendeltreppe passt ideal für Röhrchen mit einem Durchmesser von 0,3 bis 0,4 Nanometer (ein Millionstel Millimeter). Gibt man aus Bakterien gewonnene oder synthetische DNA-Ketten in das vorher kräftig geschüttelte Gemisch von Nano-Röhren, so legen sich die DNA-Ketten wie Spiralen ganz gezielt nur um passende Röhren. Die DNA-Schlüssel finden also nur bei bestimmten Durchmessern die dazugehörigen Schlösser auf den Röhren und es entsteht ein neues Hybrid-Material. Der Vorteil: die Röhrchen sind nun wasserlöslich, was die Weiterverarbeitung enorm vereinfacht. Theoretische Berechnungen begleiteten die Experimente. Forscher von TUD und FZD erfassten erstmals systematisch auf quantenmechanischer Ebene die Wechselwirkung zwischen den biologischen DNA-Molekülen und den Kohlenstoff-Röhrchen. Für einige Fälle konnten sie nachweisen, dass die Elektronen beider Systeme stärker wechselwirken als mit einfacheren Modellen vorausgesagt. Dies ist ein Beleg für die DNA-gesteuerte Auswahl bestimmter Röhrchentypen, die zuvor von amerikanischen Wissenschaftlern berichtet wurde. Kohlenstoff-Nanoröhrchen allein werden heute schon vielfältig eingesetzt, etwa in der Sporttechnik oder in Sensoren. Werden die Dimensionen jedoch kleiner, so ist ein wohldefiniertes Herstellungsverfahren mit der Möglichkeit der gezielten Selektion von leitfähigen Kohlenstoff-Nanoröhrchen unabdingbar. Die neuen Berechnungen bilden eine wichtige Basis hierfür.

Die von DNA-Ketten sortierten und eingehüllten Kohlenstoff-Nanoröhrchen können definiert elektrischen Strom leiten. Damit eignen sie sich ideal als zentraler Bestandteil für das geplante nanoskalige Bauelement, einen Nano-Feldeffekt-Transistor. An solchen Nanoröhrchen-basierten Transistoren wird derzeit weltweit intensiv geforscht; das Besondere an der Dresdner Herangehensweise ist, dass ein ferroelektrisches Trägermaterial eingesetzt wird. Ein solches Trägermaterial ist aus geladenen Teilchen aufgebaut, deren Anordnung durch externe Kräfte gezielt und reversibel verändert werden kann. Damit soll es möglich werden, dass eine externe Krafteinwirkung auf der Nanometerskala das elektrische Feld des Transistors ein- und ausschaltet, was für Computer oder Nano-Maschinen der Zukunft von Vorteil sein könnte. Dr. Michael Mertig von der TUD und seinen Mitarbeitern ist es bereits gelungen, einen Transistor auf der Basis von DNA-eingehüllten Nanoröhren herzustellen und in der Gruppe von Prof. Lukas Eng wurden bereits einzelne Elemente des noch kleineren ferroelektrischen Nano-Feldeffekt-Transistors realisiert.

Prof. Gotthard Seifert, Dr. Andrey Enyashin (TUD) und Dr. Sibylle Gemming (FZD) konnten mit quantenmechanischen Berechnungen die Wechselwirkungen zwischen biologischem und physikalisch-chemischem System erstmals systematisch unter Berücksichtigung der elektronischen Effekte analysieren. Dabei ergaben sich Belege für die besonders große Selektivität einiger DNA-Schlüssel für ganz bestimmte Röhrchentypen. Für diese Arbeiten wurde Dr. Enyashin vor kurzem zum Nachwuchswettbewerb "1nside Edge" der Firma Samsung Electro-Mechanics nach Incheon (Korea) eingeladen und dort mit der Bronzemedaille ausgezeichnet.

Veröffentlichungen:
1.) S. Gemming, R. Luschtinetz, I. Chapylgin, G. Seifert, C. Loppacher, L.M. Eng, T. Kunze, C. Olbrich,: "Polymorphism in ferroic functional elements", in: European Physical Journal, Special Topics 140, S. 145 - 171 (2007).
2.) A.N. Enyashin, S. Gemming, G. Seifert: "DNA-wrapped carbon nanotubes", in: Nanotechnology 18, 245702 (2007).

3.) S. Taeger, M. Mertig: "Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis", International Journal of Materials Research 98, 742-748 (2007).

Weitere Informationen:
PD Dr. Sibylle Gemming
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 2470
Email: s.gemming@fzd.de
http://www.fzd.de
Prof. Gotthard Seifert
Technische Universität Dresden
Arbeitsgruppe für Theoretische Chemie
Tel.: 0351 4633 - 37637
Email: Gotthard.Seifert@chemie.tu-dresden.de
http://www.tu-dresden.de
http://theory.chm.tu-dresden.de/members.shtml?name=gseifert
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.tu-dresden.de

Weitere Berichte zu: DNA-Kette FZD TUD Transistor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie