Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Knorpel entsteht

08.01.2008
Wissenschaftler der TU Berlin lassen "künstliche" Knorpel wachsen

Wie entsteht eigentlich ein Knorpel? Mit gutem Grund geht Mark Rosowski vom Institut für Biotechnologie der TU Berlin dieser Frage nach: Verletzungen und Erkrankungen am Knorpelgewebe der Gelenke verursachen oft starke Schmerzen, während die Chancen auf Heilung von Rheuma und Arthrose mit herkömmlichen Methoden meist nur gering sind.

Lässt man dagegen Knorpelgewebe im Labor wachsen und transplantiert es anschließend, sehen die Chancen schon besser aus. Genau deshalb versuchen Mark Rosowski und andere Wissenschaftlerinnen und Wissenschaftler am Deutschen Rheumaforschungszentrum auf dem Gelände der Universitätsklinik Charité im Zentrum Berlins, solche "künstlichen" Knorpel zu züchten.

Als Ausgangsmaterial nehmen sie dazu menschliche Knorpelzellen. Diese von Zellbiologen Chondrozyten genannten Zellen verändern im Labor aber rasch ihr Aussehen und verwandeln sich in eine Art Vorläuferzellen. Diese können sich im Organismus in Chondrozyten, aber auch in Muskel- oder Fettzellen sowie in Sehnen verwandeln. Im Labor aber gelingt diese Rückverwandlung in Knorpelzellen nicht so recht. "Erst wenn die Zellen die richtige dreidimensionale Umgebung haben, können sie zu Knorpelgewebe wachsen", erklärt Mark Rosowski. Genau diese räumliche Umgebung aber haben sie in den Kulturflaschen nicht, in denen im Labor normalerweise Zellen wachsen. Die Zellen sinken durch die Nährflüssigkeit auf den Flaschenboden und bilden dort eine Schicht, die nur so dick ist wie eine einzige Zelle. Ein solcher "Monolayer" hat aber nur zwei räumli-che Dimensionen, weil ihm die Höhe fehlt - ein Knorpelgewebe kann so kaum wachsen.

... mehr zu:
»Knorpel »Knorpelgewebe

Biologen kennen "Tricks", die den Vorläuferzellen auf die Sprünge helfen könnten: So können sie die Zellen zu einer Art Mini-Ball formen oder sie geben so viele Zellen in eine Kulturflasche, dass sich am Boden mehrere Zellschichten übereinander lagern. Auf diese Weise erzwingen sie zwar eine dreidimensionale Struktur, natürlich sind die Verhältnisse jedoch kaum. Viel besser ist das Ergebnis, wenn die Zellen sich selbst ihre natürliche Struktur suchen können. Dazu gibt Mark Rosowski die Vorläuferzellen in eine winzige Kapsel aus Zuckerpolymeren, die nur zirka einen halben Zentimeter Durchmesser hat. Wie von selbst beginnen sich die Zellen dort aneinander festzuhalten und bilden eine dreidimensionale Struktur. "In dieser Struktur stellen sich die Vorläuferzellen offensichtlich gegenseitig die Signale zur Verfügung, die für die Umwandlung in normale Chondrozyten notwendig sind", erklärt Mark Rosowski. In der Kapsel wächst so eine Art Knorpelgewebe, das Ärzte verwenden, um kleinere Risse und Schäden zu heilen. Allerdings können sich die hohen Kosten einer solchen Therapie bisher nur Spitzensportler und sehr wohlhabende Menschen leisten.

Obendrein hilft diese Transplantation bei großen Schäden, wie sie bei Altersarthrose oder Rheuma auftreten, kaum. "Vermutlich liefert bei Sportverletzungen das noch vorhandene gesunde Knorpelgewebe die Informationen für das richtige Wachsen der transplantierten Chondrozyten", erläutert Rosowski. Dieses gesunde Gewebe fehlt bei großen Schäden. Im Labor aber wachsen die Chondrozyten nur zu einem Gewebe, das viel lockerer als ein natürlich gewachsener Knorpel im Körper ist. Im Organismus selbst geben noch eine ganze Reihe von Signalen wichtige Informationen an die Chondrozyten, mit deren Hilfe das richtige Gewebe erst entsteht. Einige dieser Botenstoffe kennt man, weiß aber nicht, in welcher Konzentration und zu welcher Zeit sie wirken müssen, um einen festen Knorpel wachsen zu lassen. Gibt Mark Rosowski eine Mischung solcher Signalstoffe in die Kapseln mit den Chondrozyten, stellt er als erstes Ergebnis fest: "Das Wachstum und Verhalten der Zellen verändert sich." Bis er und seine Kollegen die beste Zusammensetzung der Signalstoff-Mischung kennen, dürfte aber noch einige Zeit vergehen, dämpft der Forscher zu große Erwartungen.

Weitere Informationen erteilt Ihnen gern: Dipl.-Biochem. Mark Rosowski, TU Berlin, Institut für Biotechnologie, Fachgebiet Medizinische Biotechnologie, Tel.: 030/89002262 oder 030/314-72573, E-Mail: rosowski@drfz.de.

Hinweis: Dieser Beitrag ist das "Thema der Woche - EIN-Blick für Journalisten" auf dem TUB-newsportal. Sie finden dort neben dem Beitrag einen Expertendienst sowie weiterführende Links: www.pressestelle.tu-berlin.de/newsportal

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.pressestelle.tu-berlin.de/medieninformationen/
http://www.pressestelle.tu-berlin.de/newsportal

Weitere Berichte zu: Knorpel Knorpelgewebe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie