Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Knorpel entsteht

08.01.2008
Wissenschaftler der TU Berlin lassen "künstliche" Knorpel wachsen

Wie entsteht eigentlich ein Knorpel? Mit gutem Grund geht Mark Rosowski vom Institut für Biotechnologie der TU Berlin dieser Frage nach: Verletzungen und Erkrankungen am Knorpelgewebe der Gelenke verursachen oft starke Schmerzen, während die Chancen auf Heilung von Rheuma und Arthrose mit herkömmlichen Methoden meist nur gering sind.

Lässt man dagegen Knorpelgewebe im Labor wachsen und transplantiert es anschließend, sehen die Chancen schon besser aus. Genau deshalb versuchen Mark Rosowski und andere Wissenschaftlerinnen und Wissenschaftler am Deutschen Rheumaforschungszentrum auf dem Gelände der Universitätsklinik Charité im Zentrum Berlins, solche "künstlichen" Knorpel zu züchten.

Als Ausgangsmaterial nehmen sie dazu menschliche Knorpelzellen. Diese von Zellbiologen Chondrozyten genannten Zellen verändern im Labor aber rasch ihr Aussehen und verwandeln sich in eine Art Vorläuferzellen. Diese können sich im Organismus in Chondrozyten, aber auch in Muskel- oder Fettzellen sowie in Sehnen verwandeln. Im Labor aber gelingt diese Rückverwandlung in Knorpelzellen nicht so recht. "Erst wenn die Zellen die richtige dreidimensionale Umgebung haben, können sie zu Knorpelgewebe wachsen", erklärt Mark Rosowski. Genau diese räumliche Umgebung aber haben sie in den Kulturflaschen nicht, in denen im Labor normalerweise Zellen wachsen. Die Zellen sinken durch die Nährflüssigkeit auf den Flaschenboden und bilden dort eine Schicht, die nur so dick ist wie eine einzige Zelle. Ein solcher "Monolayer" hat aber nur zwei räumli-che Dimensionen, weil ihm die Höhe fehlt - ein Knorpelgewebe kann so kaum wachsen.

... mehr zu:
»Knorpel »Knorpelgewebe

Biologen kennen "Tricks", die den Vorläuferzellen auf die Sprünge helfen könnten: So können sie die Zellen zu einer Art Mini-Ball formen oder sie geben so viele Zellen in eine Kulturflasche, dass sich am Boden mehrere Zellschichten übereinander lagern. Auf diese Weise erzwingen sie zwar eine dreidimensionale Struktur, natürlich sind die Verhältnisse jedoch kaum. Viel besser ist das Ergebnis, wenn die Zellen sich selbst ihre natürliche Struktur suchen können. Dazu gibt Mark Rosowski die Vorläuferzellen in eine winzige Kapsel aus Zuckerpolymeren, die nur zirka einen halben Zentimeter Durchmesser hat. Wie von selbst beginnen sich die Zellen dort aneinander festzuhalten und bilden eine dreidimensionale Struktur. "In dieser Struktur stellen sich die Vorläuferzellen offensichtlich gegenseitig die Signale zur Verfügung, die für die Umwandlung in normale Chondrozyten notwendig sind", erklärt Mark Rosowski. In der Kapsel wächst so eine Art Knorpelgewebe, das Ärzte verwenden, um kleinere Risse und Schäden zu heilen. Allerdings können sich die hohen Kosten einer solchen Therapie bisher nur Spitzensportler und sehr wohlhabende Menschen leisten.

Obendrein hilft diese Transplantation bei großen Schäden, wie sie bei Altersarthrose oder Rheuma auftreten, kaum. "Vermutlich liefert bei Sportverletzungen das noch vorhandene gesunde Knorpelgewebe die Informationen für das richtige Wachsen der transplantierten Chondrozyten", erläutert Rosowski. Dieses gesunde Gewebe fehlt bei großen Schäden. Im Labor aber wachsen die Chondrozyten nur zu einem Gewebe, das viel lockerer als ein natürlich gewachsener Knorpel im Körper ist. Im Organismus selbst geben noch eine ganze Reihe von Signalen wichtige Informationen an die Chondrozyten, mit deren Hilfe das richtige Gewebe erst entsteht. Einige dieser Botenstoffe kennt man, weiß aber nicht, in welcher Konzentration und zu welcher Zeit sie wirken müssen, um einen festen Knorpel wachsen zu lassen. Gibt Mark Rosowski eine Mischung solcher Signalstoffe in die Kapseln mit den Chondrozyten, stellt er als erstes Ergebnis fest: "Das Wachstum und Verhalten der Zellen verändert sich." Bis er und seine Kollegen die beste Zusammensetzung der Signalstoff-Mischung kennen, dürfte aber noch einige Zeit vergehen, dämpft der Forscher zu große Erwartungen.

Weitere Informationen erteilt Ihnen gern: Dipl.-Biochem. Mark Rosowski, TU Berlin, Institut für Biotechnologie, Fachgebiet Medizinische Biotechnologie, Tel.: 030/89002262 oder 030/314-72573, E-Mail: rosowski@drfz.de.

Hinweis: Dieser Beitrag ist das "Thema der Woche - EIN-Blick für Journalisten" auf dem TUB-newsportal. Sie finden dort neben dem Beitrag einen Expertendienst sowie weiterführende Links: www.pressestelle.tu-berlin.de/newsportal

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.pressestelle.tu-berlin.de/medieninformationen/
http://www.pressestelle.tu-berlin.de/newsportal

Weitere Berichte zu: Knorpel Knorpelgewebe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chaos bei der Zellteilung – wie Chromosomenfehler in Krebszellen entstehen
23.08.2017 | Deutsches Krebsforschungszentrum

nachricht Winzige Spurenverunreinigungen, enorme Auswirkungen
23.08.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Chaos bei der Zellteilung – wie Chromosomenfehler in Krebszellen entstehen

23.08.2017 | Biowissenschaften Chemie

Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

23.08.2017 | Förderungen Preise

Winzige Spurenverunreinigungen, enorme Auswirkungen

23.08.2017 | Biowissenschaften Chemie