Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Maschinen bei der Arbeit beobachtet

07.01.2008
Molekulare Maschinen sind die Hauptakteure bei der Umsetzung lebenswichtiger Prozesse in unserem Körper. Durch die Spaltung des Moleküls ATP gewinnen sie Energie und setzen diese gezielt für komplexe Prozesse ein. Forschenden am Biozentrum der Universität Basel ist es nun gelungen, eine solche molekulare Maschine - eine RNA-Helikase - bei der Arbeit zu beobachten.

In unserem Körper laufen ununterbrochen zahllose Prozesse ab, die für das Leben unabdingbar sind, etwa das Ablesen der genetischen Information, kodiert in der Basensequenz der Desoxyribonukleinsäure (DNA). Diese Prozesse benötigen Energie und werden durch Proteine ausgeführt - so genannte molekulare Maschinen. Diese spalten den universellen Energieträger der Zelle, das Adenosintriphosphat (ATP).

Die daraus gewonnene Energie können sie einsetzen, um die Struktur anderer Moleküle zu ändern. So verwenden beispielsweise Helikasen die Energie der ATP-Hydrolyse, um die Doppelhelix-Struktur der DNA und der RNA zu entwinden. Helikasen sind essenziell für das Kopieren und Ablesen der Erbinformation, für deren Umsetzung sowie für die Ausbildung der funktionalen Struktur von RNA-Molekülen. Helikase-Defekte führen im Allgemeinen zu komplexen Krankheitsbildern.

Die Bestimmung der dreidimensionalen Struktur unterschiedlicher Helikasen hat gezeigt, dass diese aus zwei globulären (kugelförmigen) Einheiten bestehen, die durch einen Spalt getrennt sind. Es ist aber bisher unklar, wie die Helikasen die Energie der ATP-Hydrolyse in Strukturänderungen der Nukleinsäuren umsetzen können. Mit der Methode des so genannten Fluoreszenz-Resonanz-Energie-Transfers ist es möglich, Abstände zwischen zwei Markern auf der Nanometerskala, also innerhalb einzelner Helikase-Moleküle, zu bestimmen. Werden Abstände zwischen mehreren Punkten bestimmt, können Rückschlüsse auf die Form der Helikase gezogen werden.

... mehr zu:
»ATP »Biozentrum »Helikase »RNA

Die Forschungsgruppe um Prof. Dagmar Klostermeier konnte so zeigen, dass eine bakterielle RNA-Helikase normalerweise eine offene Form einnimmt, in der der Spalt zwischen den globulären Einheiten geöffnet ist. Erst wenn die Helikase gleichzeitig mit ihrem Zielmolekül, der RNA, und der Energiequelle, dem ATP, in Wechselwirkung steht, schliesst sich dieser Spalt, und die Helikase nimmt eine kompakte, geschlossene Konformation ein. Als Folge dieser ATP-induzierten Konformationsänderung der Helikase wird die Doppelhelix-Struktur der RNA verzerrt und ihre Entwindung eingeleitet. Die Spaltung des ATP durch die Helikase überführt diese wiederum in die offene Form. Mehrere Zyklen von ATP-induziertem Öffnen und Schliessen der Helikase führen so zur Entwindung der RNA.

Durch zeitabhängiges Verfolgen des Abstands zwischen zwei Referenzpunkten auf beiden Seiten des Spalts ist es den Forschenden am Biozentrum gelungen, das Öffnen und Schliessen der Helikase während der RNA-Entwindung in Echtzeit zu verfolgen. Damit ist es nun möglich, diesen molekularen Maschinen bei der Arbeit zuzusehen und so die Rolle ihrer Bewegungen für die Funktion zu entschlüsseln.

Weitere Auskünfte:
Prof. Dagmar Klostermeier, Biozentrum der Universität Basel, Abteilung Biophysikalische Chemie, Tel. +41 61 267 23 81, E-Mail: Dagmar.Klostermeier@unibas.ch

Christoph Dieffenbacher | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: ATP Biozentrum Helikase RNA

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics