Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtung der RNA-Entstehung verfeinert: Positionierungssystem liefert verlässliche Fehlerabschätzung

13.10.2008
Ein neues Verfahren zur Nanometer-genauen Beobachtung von Bio-Molekülen hatten Forscher um den Biophysik-Professor Jens Michaelis von der Ludwig-Maximilians-Universität (LMU) München vor wenigen Monaten vorgestellt.

Dabei machten sie sich auf molekularer Ebene das Prinzip der Satelliten-Navigation zunutze.

Eine exakte Aussage über die Genauigkeit der Positionsbestimmung ließ sich aber bislang nicht treffen. Nun konnte der Physiker Adam Muschielok aus der gleichen Arbeitsgruppe mit einer ausgeklügelten statistischen Methode diese Lücke schließen. Professor Michaelis berichtet stolz: "Wir sind die ersten, die eine konsequente Fehlerabschätzung für diese Methode durchgeführt haben." Das im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und Center for Integrated Protein Science München (CIPSM) entwickelte Auswertungs-Verfahren wurde jetzt in der Online-Ausgabe der Fachzeitschrift "Nature Methods" veröffentlicht. Es konnte bereits dazu beitragen, die Entstehung der Messenger-RNA (mRNA, auf Deutsch: "Boten-RNA") besser als bisher zu verstehen. Bei der Herstellung von Proteinen in Körperzellen spielt die mRNA als Kopie des in der DNA gespeicherten biologischen Bauplans eine entscheidende Rolle. Sie entsteht in einem darauf spezialisierten Makromolekül, der RNA-Polymerase.

Die Arbeitsgruppe um den Biophysiker Professor Jens Michaelis konnte gemeinsam mit Professor Patrick Cramer, Fakultät für Chemie und Biochemie, vor wenigen Monaten als erste beobachten, welchen Weg die mRNA beim Austritt aus dem Polymerase-Molekül nimmt. Dazu kombinierten sie das Grund-Prinzip der Satelliten-Navigation mit der Messung des Fluoreszenz-Resonanz-Energie-Transfers (FRET). Dabei überträgt ein angeregtes Fluoreszenzfarbstoffmolekül einen Teil seiner Energie auf ein zweites Farbstoffmolekül. Die Intensität des gemessenen FRET-Signals hängt empfindlich vom Abstand der beiden Farbstoffmoleküle ab. So lassen sich Entfernungen im Nanometerbereich bestimmen.

Um die Position von mRNA-Molekülen zu bestimmen, markierten die Münchner Wissenschaftler mindestens drei bereits bekannte Stellen im RNA-Polymerase-Molekül mit Fluoreszenz-Farbstoffen, die in Analogie zum Satelliten-Navigationssystem GPS als "Satelliten" dienten. Ausgehend von diesen Positionen wurde mittels FRET der Abstand zu einem weiteren Farbstoff gemessen, der sich am Ende der mRNA befand. Durch Triangulation konnten die Forscher so die Position des Endes der RNA ermitteln.

Aber wie exakt ist dieses "Nano-Positionier-System" (NPS)? Das war bisher nicht bekannt. Nun hat der Physiker Adam Muschielok in der Arbeitsgruppe von Professor Michaelis einen Weg gefunden, um genau das herauszubekommen. Dazu bediente sich der Jung-Wissenschaftler der Methode der Bayes'schen Wahrscheinlichkeitsanalyse. In dieser nach dem englischen Mathematiker Thomas Bayes benannten Art der Statistik werden alle im Experiment verwendeten Messgrößen nicht als exakte Werte betrachtet, sondern als Zufallsvariable mit dazugehörigen Wahrscheinlichkeitsverteilungen. Alle Grundannahmen, Messgenauigkeiten und das Vorwissen über die Messgrößen sind in den Wahrscheinlichkeitsverteilungen codiert und fließen auf diese Weise in die Analyse ein.

So sind z.B. beim NPS die möglichen Positionen der Satelliten-Farbstoffmoleküle nicht mehr wie bisher auf einen einzigen Punkt beschränkt, sondern befinden sich jeweils innerhalb eines bestimmten Volumens. Die Satelliten sind nämlich - wie ein Hund an einer Leine - über eine bewegliche Bindungs-Kette mit dem Polymerase-Molekül verbunden. Genau wie der Hund nur auf einer Kreisfläche hin- und herlaufen kann, kann ein Farbstoffmolekül prinzipiell nur so weit vom Polymerase-Molekül entfernt sein wie die molekulare Kette reicht. Mit dem Vorwissen über die geometrische Struktur des Polymerase-Moleküls lässt sich dieses Aufenthalts-Volumen aber noch weiter einschränken. So können alle Positionen, an denen sich bereits ein Atom des Polymerase-Moleküls befindet, von dem Farbstoff-Satelliten nicht erreicht werden. Das ist in etwa so, wie wenn im Bild mit dem Hund eine Litfasssäule im Weg steht. Dann schränkt diese die für das Tier erreichbare Fläche ein.

Die Münchner Wissenschaftler haben in ihrem NPS neben den möglichen Positionen jedes der Satelliten-Moleküle auch andere mit nur eingeschränkter Genauigkeit bekannten Größen berücksichtigt. Das Ergebnis der Auswertung ihrer Messergebnisse ist dann nicht mehr eine einzige vermeintlich genaue Position des RNA-Moleküls, sondern eine Wahrscheinlichkeitsdichte. Diese kann man sich als eine Art Nebelschwaden vorstellen, dessen dichteste Stelle der wahrscheinlichsten Position des Farbstoffs an der RNA entspricht.

Über die Ausdehnung dieser Dichte konnten die Forscher die Genauigkeit ihrer Methode bei jeder Messung angeben. Im besten Fall beträgt sie 0,3 Nanometer, im schlechtesten Fall etwa einen Nanometer, also ein Milliardstel Meter. Eine erste Bewährungsprobe hat die neue Auswertungsmethode schon bestanden. Denn bei einer Messung hatte die bisherige Positionsbestimmung ohne Berechnung des Messfehlers einen zu weit von der Polymerase liegenden Ort für das Ende der mRNA ergeben. Diese Position ließe eine Weiterverarbeitung der RNA chemisch gar nicht zu, wäre also nicht sinnvoll. Dieser Widerspruch konnte in der jetzigen Arbeit gelöst werden. Ein weiteres Hilfsprotein, ein sogenannter Transkriptionsfaktor, verbiegt gewissermaßen die mRNA. Das Ergebnis der Bayesschen Analyse zeigt dann auch eine andere mögliche Position des mRNA Endes, die mit der Chemie im Einklang ist.

Die aktuell in der Online-Ausgabe der Fachzeitschrift "Nature Methods" vorgestellte Arbeit entstand im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich" (NIM), das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen.

Publikation:
"A nano-positioning system for macromolecular structural analysis"
Adam Muschielok, Joanna Andrecka, Anass Jawhari, Florian Brückner, Patrick Cramer, Jens Michaelis

Nature Methods, DOI: 10.1038/nmeth.1259

Ansprechpartner:
Prof. Dr. Jens Michaelis
Department Chemie und Biochemie
Tel.: 089 / 2180 - 77561
E-Mail: michaelis@lmu.de
www.cup.uni-muenchen.de/pc/michaelis
Dr. Peter Sonntag
Nanosystems Initiative Munich (NIM)
Presse- und Öffentlichkeitsarbeit
Tel.: 089 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics