Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Benzin und Chemikalien aus Pflanzenresten

29.06.2017

Aus dem unerschöpflichen Rohstoff Lignin, der als Bestandteil vieler Pflanzen in grossen Mengen anfällt, lassen sich theoretisch Treibstoffe und andere wichtige Substanzen für die Industrie gewinnen – bislang aber nicht effizient genug. Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben nun eine Methode gefunden, die bis dato unsichtbaren Zwischenprodukte der bei dieser Umwandlung genutzten katalytischen Reaktionen zu identifizieren. Dadurch lassen sich Herstellungsverfahren in Zukunft gezielter verbessern. Die Studie erscheint in der neusten Ausgabe des Fachjournals Nature Communications.

Wie praktisch und umweltfreundlich es doch wäre, wenn man Treibstoff ganz einfach aus Pflanzenresten herstellen könnte. Oder Phenole, die man in der Kunststoffindustrie dringend braucht. Wenn sich also fundamentale Rohstoffe unserer Zivilisation einfach aus dem gewinnen liessen, was die Natur jedes Jahr in rauen Mengen produziert und wir sonst vor lauter Überfluss verrotten lassen.


PSI-Forscher Patrick Hemberger an der VUV-Strahllinie der Synchrotron Lichtquelle Schweiz SLS. Hier hat er mit Kollegen die Details der Zerlegung von Lignin in andere Substanzen untersucht.

Foto: Scanderbeg Sauer Photography

Lignin zum Beispiel steckt in allen verholzten Pflanzen und ist mit rund 20 Milliarden Tonnen Jahresaufkommen neben Zellulose und Chitin die häufigste organische Substanz auf Erden. Es besteht zum grössten Teil aus Kohlenstoff, Wasserstoff und Sauerstoff in einem sehr komplexen und grossen Molekül, das aus kleineren Verbindungen aufgebaut ist, wie man sie zur Herstellung von Treibstoff und Phenolen braucht.

Ein grosser Schritt, den Mechanismus zu verstehen

Theoretisch lassen sich also aus Lignin diese Verbindungen durch „aufknacken“ gewinnen. Allerdings ist das chemisch extrem kompliziert und aufwendig. Unterm Strich lohnt es bislang nicht. Doch dies könnte sich dank ausgeklügelter Verfahren ändern. Und Forscher des Paul Scherrer Instituts PSI in Villigen und der ETH Zürich sind nun einen grossen Schritt vorangekommen, den Mechanismus hinter den Reaktionen besser zu verstehen, die zu den gewünschten Chemikalien führen können.

In dem Verfahren wird das grosse Molekül Lignin – die Forscher verwendeten als Modell den Lignin-Baustein Guaiacol (also einen Teil des grossen Moleküls) – bei rund 400 Grad und ohne Sauerstoff in kleinere Moleküle aufgespalten. Dabei kommt ein Katalysator zum Einsatz – ein Stoff, der die Reaktion beschleunigt ohne verbraucht zu werden. In diesem Fall nutzten die Forscher einen Zeolith, ein Material mit vielen Poren und einer daher grossen Oberfläche, an der die Reaktion stattfinden kann.

Zunächst entstehen für Sekundenbruchteile sogenannte Intermediate – gasförmige Zwischenprodukte, die mit dem Wasser und Sauerstoff der Umgebung sofort weiter zu Phenolen und anderen stabilen Endprodukten reagieren. „Diese Intermediate kann man mit herkömmlichen Methoden nicht beobachten,“ sagt Patrick Hemberger, Strahllinienwissenschaftler an der Synchrotron Lichtquelle Schweiz SLS des PSI. „Vor allem kann man sie kaum unterscheiden, weil ihre Moleküle oft aus den gleichen Atomen bestehen, die nur verschieden angeordnet sind. Könnten wir aber diese Zwischenprodukte und ihr Mengenverhältnis bestimmen, dann liesse sich auch das Verfahren so verändern, dass bestimmte Intermediate bevorzugt erzeugt werden und am Ende die Ausbeute des gewünschten Produkts steigt.“


Synchrotronlicht macht Unsichtbares sichtbar

Da die Moleküle gleich viel wiegen, sind sie etwa für ein Massenspektrometer, das Substanzen anhand ihres Gewichts sortiert, nicht auseinanderzuhalten. „Mittels sogenannter Vakuum-Ultraviolett-Synchrotronstrahlung und einer Kombination aus Massenspektrometrie und Photoelektronenspektroskopie, die wir hier an der SLS zur Verfügung haben, ist uns dies nun gelungen“, berichtet Hemberger. Bedeutet: Die speziellen Lichtstrahlen, die die SLS erzeugt, schlagen Elektronen aus den Molekülen heraus, die dann mit speziellen Verfahren beobachtet werden. „Die beobachteten Eigenschaften dieser Elektronen gleichen einem Fingerabdruck, sie sind für jede Substanz einzigartig.“

Bisher wurde bei solchen katalytischen Verfahren per „cook and look“ gearbeitet, wie der Chemiker sagt: Man probierte einfach aus, welche Versuchsanordnung am meisten von dem gewünschten Produkt ergab, variierte zum Beispiel Temperatur, den Katalysator, die Konzentration der Moleküle. „Mit dem von Patrick Hemberger entwickelten Ansatz können wir nun die komplexen Reaktionsmechanismen erstmals wirklich enträtseln“, sagt Co-Autor Jeroen van Bokhoven, Leiter des Labors für Katalyse und nachhaltige Chemie am PSI und Professor für heterogene Katalyse an der ETH Zürich. „Und dadurch können wir nun gezielter neue, bessere und umweltfreundlichere Herstellungsverfahren entwickeln“, ergänzt die zweite Co-Autorin Victoria Custodis. Noch dazu lasse sich der Ansatz auf zahlreiche andere Katalyseverfahren übertragen.

Text: Jan Berndorff


Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner:
Dr. Patrick Hemberger
Labor für Femtochemie
Forschungsbereich Synchrotronstrahlung und Nanotechnologie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 3265; E-Mail: patrick.hemberger@psi.ch

Originalveröffentlichung:
Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis
Patrick Hemberger, Victoria B.F. Custodis, Andras Bodi, Thomas Gerber, Jeroen A. van Bokhoven
Nature Communications 29 June 2017
DOI: https://dx.doi.org/10.1038/NCOMMS15946

Weitere Informationen:

http://psi.ch/Dkq7 – Darstellung der Mitteilung auf der Webseite des PSI

Jan Berndorff | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: ETH Elektronen Molekül Moleküle PSI Paul Scherrer Treibstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte