Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Benzin aus dem Nanoreaktor

01.04.2015

Forschenden des Paul Scherrer Instituts PSI und der ETH Zürich ist es gelungen, einen winzigen chemischen Reaktor im Labor herzustellen, mit dem eines Tages Benzin und Diesel kostengünstiger und nachhaltiger als heute herzustellen sein könnten. Die Wissenschaftler veränderten gezielt Nanometer kleine, poröse Zeolithkristalle und bauten so einen Nanoreaktor, der zwei der Umwandlungsschritte bei der Herstellung von Kohlenwasserstoffen vollziehen kann.

Forschenden des Paul Scherrer Instituts und der ETH Zürich ist es gelungen, einen winzigen chemischen Reaktor im Labor zu bauen, mit dem man zukünftig Benzin und Diesel kostengünstiger und nachhaltiger herstellen könnte als heute.


Jeroen van Bokhoven, Leiter des Labors für Katalyse und Nachhaltige Chemie, mit dem Postdoktoranden Jinhee Lee, der die Arbeit am Nanoreaktor fortsetzt. PaulScherrer Institut/Mahir Dzambegovic.

PaulScherrer Institut/Mahir Dzambegovic.


Elektronenmikroskop-Bild des Nanoreaktors - Zeolith-Nanokristalle mit Kobaltpartikeln im inneren Hohlraum.

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Der Reaktor besteht aus nur wenige Nanometer grossen Kristallen eines Zeoliths, die die Forscher so veränderten, dass darin zwei Schritte der Herstellung synthetischer Kraftstoffe ablaufen können. Für jeden dieser Schritte benötigt man bisher einen getrennten Reaktor. Der neue Nanoreaktor könnte eines Tages helfen, Kosten einzusparen, weil er einen dieser zwei Reaktoren überflüssig macht.

Die weltweiten Erdölreserven gehen unweigerlich zur Neige und der Preis für Kraftstoffe aus Erdöl dürfte in Zukunft weiter steigen. Benzin und Diesel könnte man in Zukunft aber aus anderen Rohstoffen herstellen. Ein industrielles Verfahren dafür gibt es bereits seit 1925.

Die deutschen Chemiker Franz Fischer und Hans Tropsch entwickelten es, um aus Synthesegas – einer Mischung aus den Gasen Kohlenmonoxid und Wasserstoff – Kohlenwasserstoffe wie Benzin und Diesel herzustellen. Ursprünglich wollte man das Synthesegas aus der in Deutschland reichlich vorhandenen Kohle gewinnen, inzwischen dient vor allem Erdgas als Rohstoff, aber auch Holz, Klärschlamm oder Erntereste könnten in Zukunft diese Rolle übernehmen.

Alternativer Weg zu Benzin
Das Fischer-Tropsch-Verfahren ist längst industriell erprobt, aber der so hergestellte Kraftstoff ist wesentlich teurer als das herkömmliche, aus Erdöl gewonnene Benzin. Die Kosten des Verfahrens liessen sich jedoch senken, etwa wenn man multifunktionelle Reaktoren baut, die mehrere der notwendigen Umwandlungsschritte übernehmen. Heute erfordert jeder Umwandlungsschritt einen getrennten Reaktor. Und jeder Reaktor, den man bauen muss, kostet zusätzliches Geld, was schliesslich die Herstellungskosten in die Höhe treibt.

Der neue Nanoreaktor führt zwei Schritte des Fischer-Tropsch-Verfahrens, für die bisher zwei getrennte Reaktoren nötig sind, hintereinander aus. Der Reaktor übernimmt zum einen den ersten Umwandlungsschritt, bei dem aus Synthesegas viele verschiedene Kohlenwasserstoffe, darunter auch die Bestandteile von Benzin, hervorgehen.

Dieser erste Schritt produziert aber auch unerwünschte Kohlenwasserstoffe, die aus längeren Ketten aus Kohlenstoffatomen bestehen als die Benzinkomponenten. Diese langkettigen Kohlenwasserstoffe findet man zum Beispiel in schwerem Heizöl. Um den Anteil der höherwertigen, kurzkettigen Kohlenwasserstoffe im Endprodukt zu erhöhen, ist deshalb ein zweiter Schritt erforderlich, den man Cracking nennt. Beim Cracking werden die langkettigen Moleküle der unerwünschten Kohlenwasserstoffe in kurzkettige zerlegt. Im neuen Nanoreaktor ist auch dieser wichtige Schritt ausführbar.

Für den Bau ihres Nanoreaktors verwendeten die Wissenschaftler Nanokristalle eines Zeoliths, die sie selbst im Labor züchteten. Zeolithe sind Materialien, deren Kristallstruktur von sehr vielen kleinen Poren ähnlicher Grösse durchsetzt ist. Die vielen Poren bieten viel Fläche, auf der chemische Reaktionen ablaufen können, was eine hohe Ausbeute des Reaktors zur Folge hat. Da seine Poren zudem alle fast gleich gross sind, wirkt der Zeolith-Reaktor als ein sehr selektives Sieb. Die einheitliche Porengrösse beschränkt seine Produktpalette nämlich auf jene Moleküle, die nicht zu gross sind, um durch die Poren zu passen.

Gezielte Veränderung im Labor
Dass der neue Nanoreaktor zwei Schritte des Fischer-Tropsch-Verfahrens vollziehen kann, ist jedoch nicht den natürlichen Eigenschaften des verwendeten Zeoliths, sondern gezielten Veränderungen im Labor zu verdanken. So höhlten die Wissenschaftler ihre Nanokristalle mit einer ätzenden Lösung aus und brachten in die entstandenen Hohlräume Kobalt-Nanopartikel ein. Solche Kobaltpartikel kommen vielfach in der Industrie als Katalysatoren zum Einsatz, auch beim Fischer-Tropsch-Verfahren, dessen erstenr Umwandlungsschritt sie begünstigen.

Zum Cracking befähigt ist der Nanoreaktor auch dank dieser chemischen Behandlung: Die ätzende Lösung schuf nämlich Stellen in den Poren des Zeoliths, die sich bei chemischen Reaktionen wie eine Säure verhalten. Solche sauren Stellen katalysieren die Zerlegung langkettiger Kohlenwasserstoffe in ihre kurzkettigen Pendants, also das Cracking.

„Das Besondere an unserem Nanoreaktor ist, dass in ihm zwei Reaktionen ablaufen können, für die man üblicherweise zwei getrennte Reaktoren braucht. Je nachdem, wie man die Zeolith-Nanokristalle behandelt und welche Katalysatoren man hineinbringt, könnte man den Reaktor neben dem Fischer-Tropsch-Verfahren auch für andere Verfahren verwenden“, sagt Jeroen van Bokhoven, Leiter des Labors für Nachhaltige Chemie und Katalyse am PSI und Professor an der ETH Zürich.

Ein Vorteil des neuen Nanoreaktors ist, dass in ihm der Katalysator im Hohlraum besser geschützt ist als in früheren Versionen ähnlicher Reaktoren. Die Katalysatorpartikel verklumpten bisher nämlich, wenn man die Kristalle während der Herstellung des Reaktors erhitzte oder während der Reaktionen selbst. „In unserem Nanoreaktor bilden sich diese Klumpen, die die Gesamtfläche des Katalysators und somit seine Wirksamkeit verringern, nicht“, sagt van Bokhoven. Das liegt daran, dass jedes Katalysatorpartikel in einem Nanokristall eingeschlossen ist, das seine Beweglichkeit stark einschränkt.

„Es ist das erste Mal, dass ein multifunktioneller Nanoreaktor aus Zeolith-Kristallen gebaut wurde“, sagt van Bokhoven. „Damit vereinen wir erstmals in einem Reaktor die hohe Ausbeute, die die poröse Struktur eines Zeoliths bietet, mit der Fähigkeit, zwei Reaktionsschritte hintereinander in ein und dem selben Reaktor auszuführen.“

Text: Paul Scherrer Institut/ Leonid Leiva

Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Lernende, Doktorierende oder Postdoktorierende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Abbildungen stehen unter http://psi.ch/Pi6G zum Download bereit

Kontakt:
Prof. Dr. Jeroen van Bokhoven
Leiter des Labors für Katalyse und Nachhaltige Chemie
Paul Scherrer Institut
5232 Villigen PSI
Telefon: +41 (0)56 310 5046
E-Mail: jeroen.vanbokhoven@psi.ch

Originalveröffentlichung:
Synthesis of Single Crystal Nanoreactor Materials with Multiple Catalytic Functions by Incipient Wetness Impregnation and Ion Exchange.
Daniel Fodor, Takashi Ishikawa, Frank Krumeich, Jeroen A. van Bokhoven
Advanced Materials, 2. Februar 2015
DOI: 10.1002/adma.201404628

Weiterführende Informationen:
Website des Labors für Katalyse und Nachhaltige Chemie: http://www.psi.ch/lsk


Paul Scherrer Institut
Dagmar Baroke, M.A.
Abteilungsleiterin Kommunikation
CH-5232 Villigen PSI
Tel: +41 56 310 29 16
Fax: +41 56 310 27 17
dagmar.baroke@psi.ch
www.psi.ch
www.twitter.com/psich_de

Weitere Informationen:

http://www.psi.ch

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie