Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bayreuther Forscher züchten Nervenzellen im Reagenzglas

09.02.2015

Regenerierung von Nervenzellen im Zebrafisch lässt sich auch in vitro, in Zellkulturen, erforschen

Zebrafische besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen. Einem Forschungsteam um Prof. Dr. Stefan Schuster am Lehrstuhl für Tierphysiologie der Universität Bayreuth ist es gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium dieser Prozesse erlauben. Damit ergeben sich vielversprechende neue Möglichkeiten für die neurobiologische und biomedizinische Forschung.


Zebrafische regenerieren Nervenzellen

Beschädigte menschliche Nervenzellen in möglichst großem Umfang reparieren oder ersetzen zu können, ist ein Ziel, auf das die Medizin weltweit hinarbeitet. Dabei sind Zebrafische von besonderem Interesse. Denn sie besitzen die ungewöhnliche Fähigkeit, neue Nervenzellen zu bilden und dadurch abgestorbene oder beschädigte Nervenzellen zu ersetzen.

Es wäre für die neurologische Forschung eine wertvolle Unterstützung, wenn sie diese Prozesse nicht nur an lebenden Zebrafischen beobachten, sondern auch im Reagenzglas reproduzieren und untersuchen könnte. Doch die bisherigen Verfahren, mit denen Nervenzellkulturen von Zebrafischen künstlich angelegt wurden, haben sich als sehr arbeits- und zeitaufwändig erwiesen.

Zudem waren die Bemühungen, solche Zellkulturen zu standardisieren und dadurch die Versuchsbedingungen zu vereinheitlichen, bisher wenig erfolgreich. Selbst die fluoreszenzaktivierte Zellsortierung (FACS), eine in der Zellbiologie verbreitete Methode, führt nicht zu den gewünschten Ergebnissen.

In "Scientific Reports": Eine neuartige Anwendung eines bewährten Verfahrens

Mithilfe eines bewährten Verfahrens ist es einem Forschungsteam am Lehrstuhl für Tierphysiologie der Universität Bayreuth aber jetzt gelungen, großflächige Kulturen aus Zebrafisch-Nervenzellen anzulegen, die ein genaues Studium der Neubildung und Regeneration solcher Zellen erlauben. Die Wissenschaftler um Prof. Dr. Stefan Schuster haben die magnetisch aktivierte Zellsortierung - die unter dem rechtlich geschützten Namen "MACS" (Magnetic-Activated Cell Sortin) bekannt ist - erstmals auf Nervenzellen von Zebrafischen angewendet. Über ihre vielversprechenden Ergebnisse berichten sie im Wissenschaftsmagazin "Scientific Reports".

Magnetische Partikel ermöglichen das Aussortieren determinierter Stammzellen

Aus sterilisierten Zebrafisch-Embryonen wurde zunächst eine gemischte Zellkultur eingerichtet. Diese Zellkultur enthielt also sehr verschiedene Arten von Zellen, darunter auch sogenannte "neuronale Vorläuferzellen". Hierbei handelt es sich um unreife Nervenzellen, die aus neuronalen Stammzellen hervorgehen. Sie sind - im Unterschied zu diesen pluripotenten Stammzellen - bereits für einen bestimmten Funktionsbereich, beispielsweise das Gehirn oder die Wirbelsäule, vorgeprägt und werden daher auch als "determinierte Stammzellen" bezeichnet.

Charakteristisch für die neuronalen Vorläuferzellen ist ein Molekül mit dem Namen "PSA-NCAM". Dieses Molekül konnten die Bayreuther Wissenschaftler daher als geeigneten Ansatzpunkt für das MACS-Verfahren identifizieren. In die gemischte Zellkultur haben sie winzige magnetische Partikel (MicroBeads) eingebracht, die zuvor mit speziellen Antikörpern beschichtet worden waren.

Diese Antikörper "erkannten" die in der Zellkultur enthaltenen PSA-NCAM-Moleküle und gingen mit ihnen eine chemische Verbindung ein. Somit waren die magnetischen Partikel an die neuronalen Vorläuferzellen gleichsam angekettet. Nun wurde die Zellkultur durch einen säulenförmigen Behälter gespült, der von einem starken Magnetfeld umgeben war.

Dieses Magnetfeld bewirkte, dass die neuronalen Vorläuferzellen - und nur sie - im Behälter "festsaßen", während alle anderen Zellen ihn wieder verließen. Auf der Grundlage der aussortierten Vorläuferzellen wurden nun großflächige Zellkulturen angelegt, aus denen sich im Labor voll funktionstüchtige Nervenzellen entwickeln können.

Effizient und kostengünstig - ein vielversprechender Weg für die biomedizinische Forschung

"Die von uns konzipierte und erfolgreich getestete Anwendung des MACS-Verfahrens auf Vorläuferzellen von Zebrafischen hat sich als sehr effizient und zugleich als kostengünstig erwiesen", resümiert Georg Welzel, der die Experimente durchgeführt hat. "Zeitaufwändige manuelle Arbeiten sind hauptsächlich nur bei der Gewinnung der Zebrafisch-Embryonen erforderlich, aus denen zunächst die gemischte Zellkultur gebildet wird. Das anschließende Aussortieren der neuronalen Vorläuferzellen ist ein weitgehend automatisiertes Verfahren."

Prof. Schuster ist daher zuversichtlich, dass das Verfahren künftig weitere Verbreitung finden wird: "Damit ergeben sich vielversprechende Möglichkeiten für die neurobiologische und biomedizinische Forschung, die hoffentlich schon bald und besser als heute in der Lage sein wird, menschliche Nervenzellen wiederherzustellen oder durch neues Gewebe zu ersetzen."

Ein weiterer Schritt könne beispielsweise darin bestehen, das MACS-Verfahren auf die neuronalen Vorläuferzellen anzuwenden und aus ihnen genau diejenigen Zellen zu isolieren, die für Hirnfunktionen vorgeprägt sind. "Auf diese Weise könnten spezialisierte Zellkulturen eingerichtet werden, die beispielsweise für die Forschungen zur Parkinskon- oder Alzheimer-Erkrankung wertvolle Unterstützung leisten", meint der Bayreuther Tierphysiologe.

Forschungsförderung

Die Deutsche Forschungsgemeinschaft hat die in "Scientific Reports" veröffentlichten Forschungsarbeiten im Rahmen eines Reinhart Koselleck-Projekts unterstützt. An einigen Entwicklungsarbeiten war auch die Friedrich Baur BioMed Center gGmbH beteiligt, die von Daniel Seitz und Prof. Dr. Stefan Schuster geleitet und von der Friedrich Baur Stiftung in Burgkunstadt gefördert wird.

Veröffentlichung
Georg Welzel, Daniel Seitz, and Stefan Schuster,
Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures,
Scientific Reports 5 : 7959, DOI: 10.1038/srep07959

Ansprechpartner:
Prof. Dr. Stefan Schuster
Lehrstuhl für Tierphysiologie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49-(0)921 / 55-2470 und -2471
E-Mail: stefan.schuster@uni-bayreuth.de

Ansprechpartner für die Presse:
Universität Bayreuth Forschung,
Christian Wißler,
Universitätsstraße 30 / ZUV,
95447 Bayreut Deutschland,
Tel. (+49) 0921 / 55-5356
Web: http://www.uni-bayreuth.de 
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung