Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauplan für die Verknüpfung von Blutgefässen entdeckt

11.06.2013
Die Verbindung von Blutgefässen während der Entwicklung des Blutgefässsystems folgt einem einheitlichen Prozess.

Dabei durchlaufen die beteiligten Blutgefässzellen wie in einer Choreographie verschiedene Phasen, in denen es auch zur Durchtrennung und Transformation der Zellen kommt. Dies konnte die Forschungsgruppe von Prof. Markus Affolter am Biozentrum der Universität Basel jetzt am lebenden Organismus, dem Zebrafisch, nachweisen. Alle Ergebnisse sind im Fachmagazin «Developmental Cell» veröffentlicht.


Blutgefässe (grün) und Zellkerne (rot) im Kopf eines lebendigen Zebrafisches.
Foto: Universität Basel

Bei der Bildung neuer Blutgefässe kontaktieren sich die vordersten Zellen zweier Gefässe, die sogenannten Tipzellen. Dies sind Zellen, deren Aufgabe es ist, mit einer anderen Tipzelle in Kontakt zu treten, sich mit dieser zu verbinden und so eine gemeinsame Röhre für den Blutfluss auszubilden. Wie dieser Prozess genau funktioniert, das hat die Forschungsgruppe von Markus Affolter am Biozentrum der Universität Basel nun genauer am lebenden Organismus, dem Zebrafisch, untersucht.

Erst Fusion, dann Durchtrennung

Die Wissenschaftler zeigten, dass der Bildung neuer Blutgefässe ein einheitlicher Architekturplan zugrunde liegt. Nach diesem Plan verbinden sich alle Formen von Blutgefässen, die bei fortlaufender Blutzirkulation entstehen. Im Verlauf dieses Bildungsprozesses splitten sich die Tipzellen beider Blutgefässe, nachdem sie sich miteinander verbunden haben.

Transformation macht Fusionsstelle unsichtbar

Darüber hinaus beobachtete das Forscherteam, dass sich die Zellen anschliessend transformieren und so aus den beiden Tipzellen jeweils eine normale Blutgefässzelle entsteht. Diese Zellen lassen sich anschliessend nicht mehr von den anderen Zellen des Blutgefässes unterscheiden. «Praktisch ist es nicht möglich, im Anschluss an den Fusionsprozess die Fusionsstelle zu identifizieren», so Affolter. «Die ehemaligen Tipzellen können ab sofort alle Funktionen einer Blutgefässzelle erfüllen und sind multifunktional einsetzbar.» Auch konnte die Forschungsgruppe zeigen, dass das Molekül VE-cadherin dem Blutgefäss signalisiert, dass ein Kontakt zwischen zwei Tipzellen erfolgt und die Kontaktphase damit abgeschlossen ist.

Der Zebrafisch stellt für solche Untersuchungen ein geeignetes Modell dar. Er ist fast durchsichtig, was eine genaue Beobachtung der Blutgefässbildung im Inneren des lebendigen Tieres ermöglicht. Es ist das erste Mal, dass ein solcher Zellsplittingprozess und die Transformation der Blutgefässzellen bei der Bildung neuer Blutgefässe im geschlossenen Blutgefässsystem nachgewiesen werden konnte. Wie sich die Tipzellen der Blutgefässe erkennen, welche weiteren Moleküle den Verknüpfungsprozess steuern und wie der Anschluss von Tumoren im Organismus an den bestehenden Blutkreislauf erfolgt, möchte die Forschungsgruppe von Markus Affolter nun genauer im lebendigen Zebrafisch untersuchen.

Originalbeitrag

Anna Lenard, Elin Ellertsdottir, Lukas Herwig, Alice Krudewig, Loic Sauteur, Heinz-Georg Belting, and Markus Affolter (2013)
In Vivo Analysis Reveals A Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis
Developmental Cell, Volume 25, Issue 5, 492-506, 10 June 2013 | doi: 10.1016/j.devcel.2013.05.010

Weitere Auskünfte

Prof. Dr. Markus Affolter, Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Schweiz. Tel. +41 61 267 20 72, E-Mail: markus.affolter@unibas.ch

Heike Sacher | Universität Basel
Weitere Informationen:
http://dx.doi.org/10.1016/j.devcel.2013.05.010
http://www.biozentrum.unibas.ch/de/forschung/gruppen-plattformen/overview/unit/affolter/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

nachricht Bakterieller Kontrollmechanismus zur Anpassung an wechselnde Bedingungen
13.12.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie