Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Batterie entsalzt Meerwasser

09.05.2012
Hoffnung auf energieeffizientere Trinkwassergewinnung
Chemiker erproben neues Entsalzungskonzept

Schon heute ist Trinkwasser mancherorts Mangelware. Schätzungen zufolge werden Menschen im Jahr 2025 rund 90% des verfügbaren Trinkwassers verbrauchen – es müssen also neue Quellen aufgetan werden. Meerwasser steht in riesigen Mengen zur Verfügung. Seine Aufbereitung verschlingt allerdings sehr viel Energie.

Wesentlich mehr als theoretisch nötig wäre. RUB-Chemiker entwickeln ein neues Verfahren, das mehr Energieeffizienz verspricht. Es funktioniert wie eine Batterie und wird von der Entwicklung neuer Materialien noch profitieren.

Über die Arbeit der Forscher berichtet RUBIN, das Wissenschaftsmagazin der Ruhr-Universität, in seiner aktuellen Ausgabe.

Elektroden fangen Ionen aus dem Wasser

„Um einen Kubikmeter Meerwasser zu entsalzen, braucht man in jedem Fall mindestens 0,6 bis 0,7 Kilowattstunden Energie“, erklärt Dr. Fabio La Mantia, Leiter der Nachwuchsgruppe „Semiconductor and Energy Conversion“ am Zentrum für Elektrochemie der RUB. „Aktuell werden aber mit dem gängigen Verfahren der Umkehrosmose rund vier Kilowattstunden verbraucht.“ La Mantia und seine Kollegen haben nun ein ganz neues Verfahren getestet: Das Salzwasser wird in einer Art Batteriezelle in Kontakt mit zwei Elektroden gebracht. Die eine enthält Silbermikropartikel, die andere Natrium-Mangan-Oxid-Nanostäbchen. Beim Anlegen einer Spannung zieht die Silberelektrode negativ geladene Chlorid-Ionen an und „fängt“ sie aus dem Wasser heraus, die andere Elektrode positiv geladene Natrium-Ionen. Das Salzwasser wird dadurch ärmer an Kochsalz (Natrium-Chlorid, NaCl).

Mini-Zelle im Labor funktioniert

Die Batteriezelle im Labor, die 0,2 Milliliter Salzwasser fasst und über zwei Quadratzentimeter Elektrodenfläche verfügt, konnte binnen einer Stunde den Salzgehalt des Wassers um etwa die Hälfte senken. „Hochgerechnet heißt das, dass wir einen Liter Wasser pro Quadratmeter und Stunde in diesem Maß entsalzen können“, rechnet Dr. La Mantia vor. Da das noch nicht genügt – um es trinken zu können, müsste man dem Wasser 98% des Salzes entziehen – suchen die Forscher nach neuen Materialien, die effizienter Ionen anziehen, dennoch nicht allzu früh zur Elektrolyse führen und natürlich nicht gesundheitsschädlich sein dürfen. Die Materialien sollen außerdem möglichst selektiv für Natrium- und Chlorid-Ionen sein und dem Wasser nicht noch viele weitere Stoffe entziehen, die im Trinkwasser nützlich sind, wie etwa Magnesium und Kalzium. „Verglichen mit der Umkehrosmose, die es schon seit rund 40 Jahren gibt, ist unser Verfahren noch sehr neu. Die Umkehrosmose ist wissenschaftlich ausgereizt, da wird es wahrscheinlich keine großen Verbesserungen mehr geben. Unser Verfahren wird noch sehr viel weiter entwickelt werden, so dass wir auf jeden Fall noch große Verbesserungen erreichen können“, ist Dr. La Mantia zuversichtlich.

Themen in RUBIN Frühjahr 2012

In RUBIN Frühjahr 2012 finden Sie außerdem folgende Themen: Leuchtende Nanopartikel aus der Mikrowelle; Griechische Wissenschaft in Arabischer Sprache; Was die Materie zusammenhält; Gen-Getümmel im Ozean - Forscher entschlüsseln die Funktion unbekannter Proteine; „Wat hasse gesacht?“ – Sprachwissenschaftler nehmen das Ruhrdeutsch von heute und damals unter die Lupe; Pantomime der Roboter; Ganz wie der eigene Knochen – Materialforscher entwickeln Herstellungsverfahren für poröse Implantate; Schüler testen – aber richtig; Mit dem Eiswürfel ins ferne Weltall schauen; Batterie entsalzt Meerwasser. RUBIN ist zum Preis von 4,- Euro in der Stabsstelle für Strategische PR und Markenbildung der RUB erhältlich und online unter http://www.rub.de/rubin.

Weitere Informationen

Dr. Fabio La Mantia, Leiter der Nachwuchsgruppe „Semiconductor and Energy Conversion“, Zentrum für Elektrochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24196, E-Mail: Fabio.Lamantia@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de/rubin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics