Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterium im Raupendarm besitzt molekularen Eisenspeicher

01.09.2011
Max-Planck-Forscher analysieren Struktur eines Proteins, das in seinem Innern Eisen speichern kann

In fast allen Lebensformen auf dieser Erde spielt Eisen eine wichtige Rolle. Zu wenig Eisen führt zu Mangelerscheinungen, zu viel Eisen wiederum ist gefährlich unter anderem für das Erbmolekül DNA.


Molekulare Struktur des Enzyms N-Acyl-Aminosäure-Hydrolase (AAH) aus Microbacterium arborescens: Darstellung der Proteinoberfläche mit negativen (roten) und positiven (blauen) Ladungen. Das Dreieck kennzeichnet die Eisenaufnahmepore.
Kornelius Zeth, MPI Tübingen



Molekulare Struktur des Enzyms N-Acyl-Aminosäure-Hydrolase (AAH) aus Microbacterium arborescens: Längsschnitt durch die Pore mit Darstellung des Eisenaufnahmemechanismus. Eintretende Eisen(II)ionen, von 6 Wassermolekülen umgeben (räumliche Darstellung im Kasten unten rechts), werden zu Eisen(III)ionen oxidiert und verlieren dabei ihre Hydrathülle, bevor sie im Inneren des Moleküls eingelagert werden. Kornelius Zeth, MPI Tübingen

Max-Planck-Wissenschaftler aus Jena und Tübingen haben jetzt die räumliche Struktur eines bakteriellen Enzyms aus Microbacterium arborescens aufgeklärt, das mehrere hundert Eisenionen in seinem Zentrum anreichern kann, und zwar je nach Lage der Eisenversorgung in seiner Umgebung: zum Beispiel dem Raupendarm der Zuckerrübeneule (Spodoptera exigua).

Das Enzym verhindert durch seine zusätzliche Peroxidase-Aktivität auch das Auftreten von zellschädigenden Sauerstoffradikalen. Überdies katalysiert es die Hydrolyse und Bildung von N-Acylglutaminen, Verbindungen der Aminosäure Glutamin mit Fettsäuren. Anhand dieser Verbindungen erkennt die Pflanze den Raupenschädling und startet ihre chemische Abwehr gegen den Eindringling. In zahlreichen anderen Bakterienarten werden sehr ähnliche Enzyme als Schutzproteine für DNA produziert. (The Journal of Biological Chemistry. DOI: 10.1074/jbc.M111.246108)

Mikroben sind allgegenwärtig auf dieser Erde. Nicht nur freilebend, sondern auch in Gemeinschaft mit anderen, höheren Organismen werden sie gefunden. Dank moderner biologischer Verfahren kommt man heute diesen "mikrobiellen Mitbewohnern" auf die Spur und ihre Rolle innerhalb der Lebensgemeinschaft kann genau studiert werden.

Microbacterium arborescens ist ein Bakterium, das sich unter anderem in den Därmen von pflanzenfressenden Raupen aufhält. Die Abteilung Bioorganische Chemie des Max-Planck-Instituts für chemische Ökologie in Jena erforscht die Wechselwirkungen zwischen Insekten und Mikroben, die mit oder in ihnen leben. Worin besteht der Vorteil für beide? Wie stark hängen beide voneinander ab? Haben die Mikroben eine Funktion bei der Interaktion zwischen Fraßinsekt und Wirtspflanze? Im Verlauf von Experimenten zur Beantwortung solcher Fragen stießen die Wissenschaftler auf ein Enzym, das sie aus M. arborescens gewonnen hatten - einem Darmbewohner der Zuckerrübeneule Spodoptera exigua. Es wurde aufgrund seiner katalytischen Eigenschaften als N-Acyl-Aminosäure-Hydrolase (AAH) bezeichnet, weil es die Synthese/Hydrolyse von Amino-/Fettsäureverbindungen betreibt, die über den Speichel und Darminhalt der Raupe in die befallene Pflanze gelangen und dort deren Abwehrmechanismen auslösen.

Die Klonierung und Sequenzierung des AAH-kodierenden Gens führte zu einem interessanten Ergebnis: AAH ist eng verwandt mit Proteinen aus anderen Mikroorganismen, und zwar den "DNA protection during starvation (DPS)" Proteinen, die an das Erbmolekül binden und durch Kristallisation schützen, sobald Mikroben in einen Mangelzustand verfallen. Jelena Pesek, Doktorandin in der Abteilung Bioorganische Chemie des Instituts, war jedoch erstaunt, dass sich das Enzym AAH aus M. arborescens von den DPS-Enzymen anderer Mikroben dahingehend unterscheidet, dass es im Darm die Konzentration der für die Pflanze-Insekt Interaktion wichtigen N-Acylglutamine regulieren kann. Weiterhin kann das Enzym in seinem Inneren Eisenionen speichern. Ist freies zweiwertiges Eisen (Fe(II)) im Überschuss vorhanden, entstehen aus Wasserstoffperoxid (H2O2), das von den Darmzellen des Insekts zur Abwehr von Mikroorganismen gebildet wird, für die Zelle gefährliche Sauerstoffverbindungen in Form von Hydroxylradikalen durch einen als Fenton-Reaktion bezeichneten Vorgang:

Fe2+ + H2O2 → Fe3+ + OH- + •HO (Fenton-Reaktion)

Das sehr reaktionsfreudige Hydroxylradikal •HO schädigt vor allem die DNA und verursacht so gefährliche Mutationen im Erbgut. In Zusammenarbeit mit Kornelius Zeth vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen gelangen den Wissenschaftlern schließlich die Kristallisation und die Röntgenstrukturaufklärung und damit auch die Analyse des Eisentransportmechanismus des Enzyms.

Das Protein besteht aus 12 identischen Untereinheiten und weist eine Molekülmasse von insgesamt 204 Kilodalton auf - eine für ein Enzym beachtliche Größenordnung. Das Homooligomer ist rund und im Inneren hohl. In diesem Hohlraum können 500 Eisenatome als dreiwertiges Eisen (überwiegend in Form von Fe2O3) gespeichert werden. Dabei bietet der Transport des Eisens in diesen Hohlraum eine Besonderheit: Das kugelförmige Protein besitzt vier selektive Poren, die nur zweiwertige Eisenionen mitsamt ihrer Hydrathülle aus sechs Wassermolekülen durchtreten lassen. Im Innern der Hohlkugel werden die Eisenionen an Ferroxidase-Zentren zu dreiwertigem Eisen umgewandelt, wodurch das gefährliche H2O2 unschädlich gemacht wird, indem daraus Wasser (H2O) gebildet wird.

Die Wissenschaftler vermuten, dass N-Acyl-Aminosäure-Hydrolase das Überleben von M. arborescens unter den harschen und je nach Nahrungsqualität wechselnden Bedingungen im Darm der Raupe sicherstellt. Das Enzym schützt vor oxidativem Stress, indem es durch Speicherung die Konzentration an freiem Fe(II) reduziert und gleichzeitig H2O2 als Quelle für zellschädigende Radikale unwirksam macht. In welchem evolutionären Zusammenhang die durch die AAH ebenfalls katalysierte Bildung und Hydrolyse der N-Acylglutamine steht, ist unklar. Solche Verbindungen könnten der Raupe den Vorteil verschaffen, ihre Blattnahrung besser zu verdauen. Im Verlauf der Evolution haben die attackierten Wirtspflanzen dann "gelernt", diese Verbindungen, die beim Raupenfraß in ihre Blätter eindringen, als chemisches Warnsignal zu verwerten, um ihre Abwehr gegen den Schädling gezielt zu mobilisieren. [JWK]

Originalveröffentlichung:
Jelena Pesek, Rita Büchler, Reinhard Albrecht, Wilhelm Boland, Kornelius Zeth: Structure and Mechanism of Iron Translocation by a Dps Protein from Microbacterium arborescens. The Journal of Biological Chemistry 286. DOI: 10.1074/jbc.M111.246108
Weitere Informationen:
Prof. Dr. Wilhelm Boland, Tel.: 03641 - 57 1201, boland@ice.mpg.de
Dr. Kornelius Zeth,Tel.: 07071-601323, kornelius.zeth@tuebingen.mpg.de
Bildanfragen: Downloads auf http://www.ice.mpg.de/ext/735.html
oder bei
Angela Overmeyer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erfolgreich Infektionen erforscht - DFG-Forschergruppe verlängert
24.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Von Schwefel zu Kohlenstoff
24.01.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie