Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterium mit Knall-Effekt

29.08.2014

Nitrit-oxidierende Bakterien spielen eine Schlüsselrolle im natürlichen Stickstoffkreislauf der Erde sowie in Kläranlagen. Bislang wurde angenommen, dass diese Spezialisten stets Nitrit als Energiequelle benötigen.

Ein internationales ForscherInnenteam unter der Leitung von Holger Daims, Mikrobiologe an der Universität Wien, hat nun gezeigt, dass Nitrit-oxidierende Bakterien Wasserstoff als alternative Energiequelle nutzen können. Die Oxidation von Wasserstoff mit Sauerstoff, auch Knallgas-Reaktion genannt, ermöglicht ihnen Wachstum unabhängig von Nitrit und damit ein Leben entkoppelt vom Stickstoffkreislauf. Die Ergebnisse erscheinen in der aktuellen Ausgabe der Fachzeitschrift "Science".


Elektronenmikroskopische Aufnahme von Nitrospira-Zellen bei 70.000-facher Vergrößerung.

(Copyright: Boris Nowka und Eva Spieck, Universität Hamburg)


Nachweis der Wasserstoff-abhängigen Kohlendioxid-Fixierung von einzelnen Nitrospira-Zellen mittels NanoSIMS. Je wärmer die Farbe, desto mehr Kohlendioxid wurde von den Zellen eingebaut.

(Copyright: Arno Schintlmeister, Universität Wien)

Stickstoff ist ein zentraler Baustein des Lebens und wird im globalen Stickstoffkreislauf in vielen Schritten in seine unterschiedlichen chemischen Formen umgewandelt. Nitrit-oxidierende Bakterien sind wichtige Akteure im Stickstoffkreislauf, da sie giftiges Nitrit zu harmloserem Nitrat umsetzen.

"Der Mensch macht sich diesen Prozess in der biologischen Abwasserreinigung zunutze. Das gebildete Nitrat ist aber auch Grundlage für weitere wichtige mikrobielle Prozesse und eine Stickstoffquelle für viele Pflanzen", erläutert die Erstautorin der Studie, Hanna Koch, Doktorandin am Department für Mikrobiologie und Ökosystemforschung der Universität Wien.

Seit der ersten Beschreibung von Nitrit-oxidierenden Bakterien im 19. Jahrhundert wurde angenommen, dass ihr Überleben von Nitrit als Energiequelle abhängt. Daher wurde das Vorkommen dieser Bakterien in der Umwelt und in Kläranlagen immer mit dem Stickstoffkreislauf in Verbindung gebracht.

Nitrospira: Nitrit-Oxidierer mit überraschenden Eigenschaften

Die am weitesten in der Natur verbreiteten Nitrit-Oxidierer gehören zur Gattung Nitrospira. Diese Bakterien kommen in verschiedenen Lebensräumen wie Böden, Flüssen, Seen und Meeren bis hin zu heißen Quellen vor. Nitrospira-Bakterien sind auch die Schlüsselfiguren der Nitrit-Oxidation in Kläranlagen. Ein Team von ForscherInnen aus Österreich, Dänemark, Deutschland und Frankreich hat nun Überraschendes über die Bakterien herausgefunden.

"Die Analyse der Erbinformation einer Nitrospira-Art ergab Hinweise auf die Verwendung von Wasserstoff als alternative Energiequelle. Die biologische Energiegewinnung aus Wasserstoff in Gegenwart von Sauerstoff wird auch als Knallgas-Stoffwechsel bezeichnet – in Anlehnung an die explosive Wirkung des Gemischs der beiden Gase", so Holger Daims vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien. Das Potential von Nitrospira, diese Energiequelle zu nutzen, wurde genau untersucht.

NanoSIMS der Universität Wien ermöglicht neue Einzelzell-Analysemethoden

Die Visualisierung des Wasserstoff-abhängigen Wachstums von Nitrospira gelang dem Team auf der Ebene einzelner Bakterienzellen mit dem hochauflösenden Sekundärionen-Massenspektrometer der Universität Wien, kurz NanoSIMS genannt. Unter Hochvakuumbedingungen wie im Weltall werden bei dieser Methode Teilchen aus einzelnen Bakterienzellen geschossen, um sie anschließend durch Massenspektrometrie zu identifizieren.

"Eine solche Vorgehensweise ist weltweit nur an sehr wenigen Forschungsinstituten möglich", freut sich Daims über die High-Tech-Ausstattung der Universität Wien. Die WissenschafterInnen haben so gezeigt, dass Nitrospira-Zellen mit Wasserstoff als Energiequelle Kohlendioxid aufnehmen und in ihre Zellsubstanz einbauen. Diese Stoffwechsel-Aktivität ist mit der Zellvermehrung verknüpft und war somit eine wichtige Grundlage für den Beweis, dass die Nitrospira-Bakterien tatsächlich mit Wasserstoff wachsen. Die neu entdeckten Eigenschaften dieser Nitrospira-Art werfen nun viele Fragen über die Lebensweise ihrer "frei lebenden" nahen Verwandten in der Umwelt und in Kläranlagen auf.

Neue Erkenntnisse zur Ökologie der Nitrit-Oxidierer

"Die Oxidation von Wasserstoff ermöglicht Nitrospira nicht nur unerwartete Lebensräume zu besiedeln, sondern hilft ihnen auch aktiv zu bleiben, wenn gerade kein Nitrit zur Verfügung steht", erklärt Hanna Koch. Holger Daims ergänzt schmunzelnd: "Diese Entdeckung war für uns ein richtiger Knaller. Im nächsten Schritt wollen wir untersuchen, wie wichtig Wasserstoff als Energiequelle für Nitrit-Oxidierer in der Umwelt ist. Unser Ziel ist, die Ökologie dieser Bakterien und ihre Bedeutung im globalen Stickstoff- und Kohlenstoffkreislauf besser zu verstehen."

Die Arbeit an der Studie über Nitrit-oxidierende Bakterien wurde vom Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) und vom Wissenschaftsfonds (FWF) gefördert.

Publikation in Science
Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation: Hanna Koch, Alexander Galushko, Mads Albertsen, Arno Schintlmeister, Christiane Gruber-Dorninger, Sebastian Lücker, Eric Pelletier, Denis Le Paslier, Eva Spieck, Andreas Richter, Per H. Nielsen, Michael Wagner, und Holger Daims. In: Science,
DOI: 10.1126/science.1256985

Wissenschaftlicher Kontakt
Bis 1. September
Mag. Hanna Koch
Department für Mikrobiologie
und Ökosystemforschung
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-766 09
koch@microbial-ecology.net

Ab 1. September
Assoz.-Prof. Dr. Holger Daims
Department für Mikrobiologie
und Ökosystemforschung
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-766 04
daims@microbial-ecology.net

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Weitere Informationen:

http://medienportal.univie.ac.at/presse - Medienportal der Universität Wien

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics