Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterientoxin bewirkt Zellselbstmord

01.08.2012
Grundlagenforschung über die Wirkweise von bakteriellen Giftstoffen könnte Inaktivierung von Krebszellen ermöglichen

Das Forschungsteam des Freiburger Pharmakologen Prof. Dr. Dr. Klaus Aktories hat den Wirkmechanismus eines bakteriellen Toxins aufgeklärt und gezeigt, dass dieser Giftstoff den Selbstmord von Zellen auslöst. Die Arbeit ist im Journal of Biological Chemistry, der am häufigsten zitierten naturwissenschaftlichen Fachzeitschrift, erschienen.


Einfluss des Toxins auf das Wachstum von Zellen: Während im Normalfall eine Signalkette mittels des Schaltermoleküls Ras und des Faktors Raf zum Wachstum der Zelle anregt, unterbricht der Giftstoff durch Anheftung eines Zuckermoleküls die Kette und führt zum Tod der Zelle.
Grafik: Prof. Dr. Dr. Klaus Aktories

Erst vor wenigen Jahren ist das Toxin TpeL von japanischen Forscherinnen und Forschern entdeckt worden. Es wird vom Bakterium Clostridium perfringens, dem Erreger des Gasbrands, gebildet. Untersuchungen ergaben, dass es sich hierbei um einen Giftstoff aus der Familie der so genannten clostridialen glukosylierenden Toxine handelt. Toxine dieser Art heften ein Zuckermolekül an bestimmte Zielproteine der Wirtszellen und beeinträchtigen hierdurch die natürliche Funktion dieser Proteine.

Die Arbeitsgruppe am Institut für Experimentelle und Klinische Pharmakologie und Toxikologie sowie dem Centre for Biological Signalling Studies (BIOSS) der Universität Freiburg hat nun gezeigt, wie das Toxin ein wichtiges Schaltermolekül in menschlichen Zellen namens Ras verändert. Auch das entsprechende Zuckermolekül, das an Ras angeheftet wird, konnte identifiziert werden. Ras-Proteine sind wichtige Glieder einer Signalkette, die unter anderem zur Aktivierung des Zellwachstums führt. „Mutationen von Ras-Proteinen werden häufig in Tumoren gefunden und haben eine bedeutende Rolle bei der Krebsentstehung“, sagt Aktories. „Unsere Untersuchungen haben ergeben, dass die Signalkette, die über das Ras-Protein läuft, durch das Toxin unterbrochen wird. Dadurch verhindert es die Interaktion von Ras mit seinem Signalpartner Raf und führt schließlich zum Zelltod.“

Derzeit untersucht das Freiburger Team, ob das TpeL-Toxin in der Lage ist, Krebs erzeugende Ras-Varianten zu inaktivieren. Dies könnte es ermöglichen, Krebszellen mit Hilfe des bakteriellen Toxins zum Selbstmord zu führen.

Originalveröffentlichung:
Guttenberg G, Hornei S, Jank T, Schwan C, Lü W, Einsle O, Papatheodorou P, Aktories K.: Molecular Characteristics of Clostridium perfringens TpeL Toxin and Consequences of Mono-O-GlcNAcylation of Ras in Living Cells.

J Biol Chem, Vol. 287, No. 30, pp. 24929–24940, July 20, 2012.

Kontakt:
Prof. Dr. Dr. Klaus Aktories
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics