Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakteriengifte – direkte Ursache für Schmerz und Entzündung

31.07.2014

Erlanger Forscher entdecken neuen Ansatz für die Entwicklung von Medikamenten

Lungenentzündung, Hirnhautentzündung und Sepsis gehören zu den besonders gefürchteten Erkrankungen, denn sie lassen sich nur schwer behandeln. Alle diese Krankheiten haben eines gemeinsam: Sie können von sogenannten Gram-negativen Bakterien ausgelöst werden, zu denen auch viele Krankenhauskeime gehören.


Bildunterschrift: siehe Text

Grafik: FAU

Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt gezeigt, dass die von diesen Bakterien erzeugten Giftstoffe eine direkte Ursache für starke Schmerzen und Entzündungen sein können. Dieses Ergebnis könnte zur Entwicklung neuer Medikamente beitragen, mit denen sich viele Entzündungserkrankungen besser behandeln lassen.

Zuckermoleküle als Schmerzauslöser

Die Zellwände der Gram-negativen Bakterien werden von Lipopolysacchariden (LPS), fetthaltigen Zuckerkettenmolekülen, stabilisiert. Werden die Bakterien nun vom Immunsystem oder von Antibiotika angegriffen, zerfallen sie und setzen große Mengen der LPS frei. In der Regel wirken die LPS als Signalstoffe und aktivieren die Zellen des Immunsystems.

Ein europäisches Forscherteam aus Alicante, Leuven und Erlangen, an dem auch eine Arbeitsgruppe um Prof. Dr. Peter Reeh vom Institut für Physiologie und Pathophysiologie der FAU beteiligt ist, hat entdeckt, dass LPS auch die direkte Ursache für Schmerzen sein können. Sie sind nämlich in der Lage, Nozizeptoren – feine Nervenverästelungen, die Schmerz erzeugen können – zu aktivieren und zu sensibilisieren.

Verantwortlich für die leichte Erregbarkeit der Nervenfasern ist wiederum ein höchst universeller Chemorezeptor – das Eiweißmolekül TRPA1. Es handelt sich dabei um einen Ionenkanal, der in der Zellwand sitzt. Durch diesen Kanal strömen Ionen ein, die die Nerven erregen. Die Folge davon kennt jeder, der schon einmal Zwiebeln geschnitten hat: Der TRPA1 spricht auf den Schadstoff, das „Tränengas“, an und verursacht das unangenehme Brennen in Augen und Nase.

Rezeptor reagiert auf LPS

Die Forscher um Peter Reeh haben nachgewiesen, dass LPS den TRPA1 schnell und direkt ohne Umwege über Immunzellen und Entzündungshormone aktivieren können. „Dabei haben wir gleichzeitig auch einen bisher unbekannten Mechanismus entdeckt“, erklärt Peter Reeh. „Der gemeinsame Fettanteil der LPS-Moleküle scheint sich in die Nervenzellmembran, die ebenfalls aus fettartigen Stoffen besteht, hineinzudrängen und diese dabei einzudellen.“

Die Folge davon: TRPA1 gerät unter Zugspannung, was die Öffnung des Ionenkanals erleichtert – Natrium- und Kalziumionen dringen ein und erregen die feinen Verästelungen der Nerven. „Im Krankheitsfall treten LPS natürlich nicht alleine auf, sondern stets zusammen mit Säuren und anderen Schadstoffen, die durch die bakterielle Entzündung entstehen“, sagt Reeh. Die Forscher der FAU haben zum Beispiel gezeigt, dass bei einem Zusammentreffen von LPS mit solchen Schadstoffen am Rezeptor TRPA1 hochwirksame Signalstoffe, sogenannte Neuropeptide, aus den erregten Nervenfasern ausgeschüttet werden, die die Blutgefäße erweitern, die Durchlässigkeit ihrer Wände steigern und Immunzellen anlocken. Reeh: „ Wenn das an mehreren Stellen im Körper passiert, besteht die Gefahr, dass der Kreislauf zusammenbricht, was wiederum zu einem sogenannten Endotoxinschock führen kann.“

TRPA1-Blocker als Lebensretter?

Für die Pharmaindustrie ist dieses Ergebnis ein weiterer Anlass, ein Mittel gegen TRPA1 zu entwickeln. Denn TRPA1 steht schon lange unter dem Verdacht, eine fatale Rolle bei Asthma, bei Dickdarm- und Bauchspeicheldrüsenentzündung zu spielen. „Vielleicht ließen sich mit einem TRPA1-Blocker auch die oft tödlichen Folgen einer Blutvergiftung abwenden, die zu Ganzkörperentzündung und Multiorganversagen führen kann“, sagt Reeh.

doi:10.1038/ncomms4125
Victor Meseguer, Yeranddy A. Alpizar, Enoch Luis, Sendoa Tajada, Bristol Denlinger, Otto Fajardo, Jan-Albert Manenschijn, Carlos Fernández-Peña, Arturo Talavera, Tatiana Kichko, Belén Navia, Alicia Sánchez, Rosa Señarís, Peter Reeh, María Teresa Pérez-García, José Ramón López-López, Thomas Voets, Carlos Belmonte, Karel Talavera, Félix Viana

Bildunterschrift:
Schematische Darstellung des neu entdeckten molekularen Mechanismus: Der Fettanteil der LPS-Moleküle drängt sich in die Nervenzellmembran. Dadurch öffnet sich der Ionenkanal TRPA1, Natrium- und Kalziumionen können eindringen und die feinen Verästelungen der Nerven erregen. Die freigesetzten Neuropeptide (SP, CGRP) fördern die neurogene Entzündung. 4-Hydroxynonenal ist ein Beispiel für einen körpereigenen Schadstoff aus dem Entzündungsstoffwechsel.

Informationen für die Medien:
Prof. Dr. Peter Reeh
Tel.: 09131/ 85-22228
reeh@physiologie1.uni-erlangen.de

Dr. Tatjana Kichko
Tel.: 09131/ 85-22692
kichko@physiologie1.uni-erlangen.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise