Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien vergiften sich von innen heraus

23.03.2011
Neue Antibiotika könnten einen bakteriellen Selbstmord-Mechanismus nutzen
Die Arbeitsgruppe um Anton Meinhart vom Max-Planck-Institut für medizinische Forschung in Heidelberg konnte nachweisen, dass Proteine aus der Gruppe der Zeta-Toxine einen Mechanismus auslösen, in dessen Verlauf sich Bakterien selbst zerstören. Auslöser dieses bakteriellen Selbstmords sind Toxin-Antitoxin-Systeme (TA-System), die eine wichtige Rolle bei der Vererbung von Resistenz- und Virulenz-Genen spielen. Den Forschern ist es damit gelungen, ein wichtiges Puzzlestück für die Entwicklung neuer Breitband-Antibiotika hinzu zu fügen.

Bereits wenige Gene können aus harmlosen Bakterien gefährliche Killer machen. Gene für krankmachende Eigenschaften oder Antibiotika-Resistenz können mit Hilfe so genannter mobiler genetischer Elemente von Bakterium zu Bakterium übertragen werden. Diese Elemente tragen jedoch oft auch Gene für Toxine sowie die entsprechenden Antitoxine. „Die mobilen genetischen Elemente sind also für die Bakterien Segen und Fluch zugleich: Sie helfen ihnen zu überleben, können sie aber auch töten“, sagt Anton Meinhart vom Heidelberger Max-Planck-Institut.

Escherichia coli Zellen kurz nachdem sie dazu gebracht wurden, das pneumococcale Zeta Toxin PezT herzustellen. Die grün fluoreszierenden Zellen sind zwar noch intakt, aber haben schon Schwierigkeiten, den letzten Schritt ihrer Zellteilung durchzuführen (daher auch die langen Zellfilamente). Die rot fluoreszierenden Zellkörper sind hingegen schon geborsten und tot.
© MPI für medizinische Forschung

PezAT („Pneumokokkales Epsilon/Zeta Toxin-Antitoxin System“) ist ein besonders interessantes Toxin-Antitoxin-System des Erregers Streptococcus pneumoniae. Diese, auch Pneumokokken genannten Bakterien verursachen schwere Infektionen, wie Lungenentzündungen, Blutvergiftungen oder Hirnhautentzündungen. Die Toxin-Komponente PezT gehört hierbei zur Familie der sogenannten Zeta-Toxine, die auch in vielen anderen Krankheitserregern resistenzvermittelnde mobile genetische Elemente stabilisieren. Doch obwohl die Zeta-Toxin Familie schon vor fast 20 Jahren entdeckt wurde, war ihr tödlicher Mechanismus bis zuletzt ein Mysterium. Dabei schienen diese Toxine einen sehr ursprünglichen zellulären Prozess anzugreifen, denn die rätselhafte Aktivität von Zeta-Toxinen kann neben Bakterien auch Hefepilze und sogar Krebszellen absterben lassen.

Den Max-Planck-Wissenschaftlern ist es nun gelungen, die molekulare Wirkungsweise von Zeta-Toxinen an dem Modellbakterium Escherichia coli aufzuklären. Dabei stellte sich heraus, dass die bakteriellen Zellen nach künstlicher Aktivierung von PezT ähnliche Vergiftungserscheinungen zeigen, wie nach einer Behandlung mit dem bekannten Antibiotikum Penicillin: Zu Beginn der PezT-Vergiftung bleiben die meisten Zellen zunächst mitten in der Teilungsphase stecken. Nach einiger Zeit platzt dann die Nahtstelle zwischen den beiden Zellkörpern auf und die Zellen sterben.

Nach weitergehenden Untersuchungen stellte sich heraus, dass PezT- und andere Zeta-Toxine neuartige Enzyme sind, die den essenziellen Zuckerbaustein UNAG (UDP-N-Acetylglucosamin) in ein giftiges Molekül verwandeln. Dieses Gift (UNAG-3P) verhindert nun, ganz ähnlich wie Penicillin, den Aufbau der bakteriellen Zellwand. Dadurch platzen die Zellen und sterben. Diesen zellinternen Prozess zu aktivieren, könnte die Antibiotika-Forschung einen entscheidenden Schritt im Kampf gegen Resistenzen weiterbringen.

Die Zeta-Toxine sind die ersten bekannten Enzyme, die Bakterien von innen heraus durch die Produktion eines „Suizid-Antibiotikums“ vergiften. Da der Baustein UNAG in allen bekannten Bakterien universell für den Aufbau der Zellwand ist, lässt sich nun die breite Wirksamkeit von Zeta-Toxinen bzw. UNAG-3P erklären. Dies macht auch die bisher unentdeckte Substanz UNAG-3P zu einem wertvollen Grundstoff für die Entwicklung neuartiger Breitband-Antibiotika. Als nächstes wollen die Forscher deshalb klären, ob UNAG-3P als ein neues, wirksames Antibiotikum eingesetzt werden kann.

Außerdem konnten die Wissenschaftler mit ihrer Entdeckung ein bislang paradoxes Phänomen erklären: Das eigentlich tödliche Protein, das pneumokokkale Zeta-Toxin PezT, fördert nämlich die Infektionsrate der Pneumokokken. Der Grund dafür ist wahrscheinlich, dass eine Aktivierung von PezT zum Platzen des Bakteriums führt und innere Bestandteile freisetzt. Dadurch gelangt auch eines der wichtigsten Gifte der Pneumokokken, das Pneumolysin, nach außen und ruft dort schwere Entzündungsreaktionen hervor. Auf diese Weise scheinen sich einzelne Pneumokokken während des Kampfs mit dem Immunsystem für die Gesamtpopulation zu opfern.

Ansprechpartner
Dr. Anton Meinhart
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-505
E-Mail: Anton.Meinhart@mpimf-heidelberg.mpg.de
Hannes Mutschler
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-517
E-Mail: Hannes.Mutschler@mpimf-heidelberg.mpg.de
Originalveröffentlichung
Hannes Mutschler, Maike Gebhardt, Robert L. Shoeman, Anton Meinhart
A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin – Antitoxin Systems Corrupts Peptidoglycan Synthesis

PLoS Biology March 23, 2011

Dr. Anton Meinhart | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1243082/selbstmord_mit_zeta-toxinen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise