Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien vergiften sich von innen heraus

23.03.2011
Neue Antibiotika könnten einen bakteriellen Selbstmord-Mechanismus nutzen
Die Arbeitsgruppe um Anton Meinhart vom Max-Planck-Institut für medizinische Forschung in Heidelberg konnte nachweisen, dass Proteine aus der Gruppe der Zeta-Toxine einen Mechanismus auslösen, in dessen Verlauf sich Bakterien selbst zerstören. Auslöser dieses bakteriellen Selbstmords sind Toxin-Antitoxin-Systeme (TA-System), die eine wichtige Rolle bei der Vererbung von Resistenz- und Virulenz-Genen spielen. Den Forschern ist es damit gelungen, ein wichtiges Puzzlestück für die Entwicklung neuer Breitband-Antibiotika hinzu zu fügen.

Bereits wenige Gene können aus harmlosen Bakterien gefährliche Killer machen. Gene für krankmachende Eigenschaften oder Antibiotika-Resistenz können mit Hilfe so genannter mobiler genetischer Elemente von Bakterium zu Bakterium übertragen werden. Diese Elemente tragen jedoch oft auch Gene für Toxine sowie die entsprechenden Antitoxine. „Die mobilen genetischen Elemente sind also für die Bakterien Segen und Fluch zugleich: Sie helfen ihnen zu überleben, können sie aber auch töten“, sagt Anton Meinhart vom Heidelberger Max-Planck-Institut.

Escherichia coli Zellen kurz nachdem sie dazu gebracht wurden, das pneumococcale Zeta Toxin PezT herzustellen. Die grün fluoreszierenden Zellen sind zwar noch intakt, aber haben schon Schwierigkeiten, den letzten Schritt ihrer Zellteilung durchzuführen (daher auch die langen Zellfilamente). Die rot fluoreszierenden Zellkörper sind hingegen schon geborsten und tot.
© MPI für medizinische Forschung

PezAT („Pneumokokkales Epsilon/Zeta Toxin-Antitoxin System“) ist ein besonders interessantes Toxin-Antitoxin-System des Erregers Streptococcus pneumoniae. Diese, auch Pneumokokken genannten Bakterien verursachen schwere Infektionen, wie Lungenentzündungen, Blutvergiftungen oder Hirnhautentzündungen. Die Toxin-Komponente PezT gehört hierbei zur Familie der sogenannten Zeta-Toxine, die auch in vielen anderen Krankheitserregern resistenzvermittelnde mobile genetische Elemente stabilisieren. Doch obwohl die Zeta-Toxin Familie schon vor fast 20 Jahren entdeckt wurde, war ihr tödlicher Mechanismus bis zuletzt ein Mysterium. Dabei schienen diese Toxine einen sehr ursprünglichen zellulären Prozess anzugreifen, denn die rätselhafte Aktivität von Zeta-Toxinen kann neben Bakterien auch Hefepilze und sogar Krebszellen absterben lassen.

Den Max-Planck-Wissenschaftlern ist es nun gelungen, die molekulare Wirkungsweise von Zeta-Toxinen an dem Modellbakterium Escherichia coli aufzuklären. Dabei stellte sich heraus, dass die bakteriellen Zellen nach künstlicher Aktivierung von PezT ähnliche Vergiftungserscheinungen zeigen, wie nach einer Behandlung mit dem bekannten Antibiotikum Penicillin: Zu Beginn der PezT-Vergiftung bleiben die meisten Zellen zunächst mitten in der Teilungsphase stecken. Nach einiger Zeit platzt dann die Nahtstelle zwischen den beiden Zellkörpern auf und die Zellen sterben.

Nach weitergehenden Untersuchungen stellte sich heraus, dass PezT- und andere Zeta-Toxine neuartige Enzyme sind, die den essenziellen Zuckerbaustein UNAG (UDP-N-Acetylglucosamin) in ein giftiges Molekül verwandeln. Dieses Gift (UNAG-3P) verhindert nun, ganz ähnlich wie Penicillin, den Aufbau der bakteriellen Zellwand. Dadurch platzen die Zellen und sterben. Diesen zellinternen Prozess zu aktivieren, könnte die Antibiotika-Forschung einen entscheidenden Schritt im Kampf gegen Resistenzen weiterbringen.

Die Zeta-Toxine sind die ersten bekannten Enzyme, die Bakterien von innen heraus durch die Produktion eines „Suizid-Antibiotikums“ vergiften. Da der Baustein UNAG in allen bekannten Bakterien universell für den Aufbau der Zellwand ist, lässt sich nun die breite Wirksamkeit von Zeta-Toxinen bzw. UNAG-3P erklären. Dies macht auch die bisher unentdeckte Substanz UNAG-3P zu einem wertvollen Grundstoff für die Entwicklung neuartiger Breitband-Antibiotika. Als nächstes wollen die Forscher deshalb klären, ob UNAG-3P als ein neues, wirksames Antibiotikum eingesetzt werden kann.

Außerdem konnten die Wissenschaftler mit ihrer Entdeckung ein bislang paradoxes Phänomen erklären: Das eigentlich tödliche Protein, das pneumokokkale Zeta-Toxin PezT, fördert nämlich die Infektionsrate der Pneumokokken. Der Grund dafür ist wahrscheinlich, dass eine Aktivierung von PezT zum Platzen des Bakteriums führt und innere Bestandteile freisetzt. Dadurch gelangt auch eines der wichtigsten Gifte der Pneumokokken, das Pneumolysin, nach außen und ruft dort schwere Entzündungsreaktionen hervor. Auf diese Weise scheinen sich einzelne Pneumokokken während des Kampfs mit dem Immunsystem für die Gesamtpopulation zu opfern.

Ansprechpartner
Dr. Anton Meinhart
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-505
E-Mail: Anton.Meinhart@mpimf-heidelberg.mpg.de
Hannes Mutschler
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-517
E-Mail: Hannes.Mutschler@mpimf-heidelberg.mpg.de
Originalveröffentlichung
Hannes Mutschler, Maike Gebhardt, Robert L. Shoeman, Anton Meinhart
A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin – Antitoxin Systems Corrupts Peptidoglycan Synthesis

PLoS Biology March 23, 2011

Dr. Anton Meinhart | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1243082/selbstmord_mit_zeta-toxinen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie