Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Bakterien Transporter in ihre äussere Membran einbauen

23.09.2013
Die äussere Hülle von Bakterien ist von unzähligen Proteinen durchsetzt. Sie bilden kleine Poren und ermöglichen so den Transport von Nährstoffen, Giften und Signalmolekülen.

Wie diese Transportproteine in die Membran gelangen, zeigen nun erstmals Prof. Timm Maier und Prof. Sebastian Hiller vom Biozentrum der Universität Basel. Sie klärten mittels Röntgenstrukturanalyse die Struktur-Funktionsbeziehung des Proteins TamA auf, das eine zentrale Rolle bei der Integration von Transportproteinen in die Membran spielt. Die Ergebnisse erscheinen jetzt in der Fachzeitschrift «Nature Structural and Molecular Biology».


Möglicher Mechanismus, wie Bakterien Autotransporter in ihre äussere Membran einbauen. Links: TamA-Proteinstruktur, rechts: TamA mit Autotransporter (orange).

Für bestimmte (gramnegative) Bakterien ist es gar nicht so einfach, Proteine vom Inneren der Zelle nach aussen zu schleusen. Denn zusätzlich zur inneren Membran schützt sie eine äussere Hülle vor widrigen Bedingungen. Diese Barriere können die Bakterien überwinden, indem sie spezielle Transportproteine in die Schutzhülle einbauen. Wie das im Detail geschehen kann, konnten Maier und Hiller, Professoren für Strukturbiologie am Biozentrum der Universität Basel, nun gemeinsam aufklären.

Struktur von Faltungshelfer TamA erklärt seine Funktion
Eine Möglichkeit, Proteine zu befördern, bieten sogenannte Autotransporter. Dabei handelt es sich um Membranproteine, die eine Fassstruktur mit einer Pore bilden, durch die sich die Proteine hinausfädeln können. Für die Faltung und den Einbau von Autotransportern in die äussere Hülle wird jedoch die Hilfe eines weiteren Proteins benötigt. Mittels Röntgenkristallografie entschlüsselten die Autoren der Studie die atomare Struktur des Einbauprotein TamA aus dem Darmbakterium Escherichia coli.

«Das Protein TamA,» erklärt Fabian Gruss, Werner-Siemens-Stipendiat und Erstautor, «bildet ebenfalls ein Fass mit einer Pore. Die Pore ist mit einem Deckel nach aussen hin verschlossen, doch die Seitenwand ist einen Spalt weit geöffnet.» Wird der noch ungefaltete Autotransporter angeliefert, angelt sich TamA ein Ende der Aminosäurekette und integriert sie nach und nach durch den Spalt in der Seitenwand in seine eigene Fassstruktur. Dabei weitet sich das Fass, die Pore wird grösser und eine Öffnung nach aussen entsteht. Durch diese gelangt das Transportgut an die Bakterienoberfläche. Die Ablösung des Autotransporters von TamA beendet den Einbauprozess. «Der Autotransporter¬mechanismus war bis jetzt völlig unklar – mit der Struktur von TamA sehen wir zum ersten Mal, wie der Einbau funktionieren könnte.»

Einbauprozess bei Infektionen wichtig
Zahlreiche Krankheitserreger wie Durchfall verursachende Yersinien, Salmonellen oder der Cholera-Erreger gehören zur Gruppe der gramnegativen Bakterien. Sie setzen mit Hilfe von Autotransportern Gifte oder klebrige Proteine frei, mit denen sie ihre Wirtszellen infizieren. In ihrer Studie konnten Maier und Hiller nun ganz neue Erkenntnisse über den Einbau von Autotransporter-Membranproteinen sowie den Transport ihrer Fracht liefern.

Originalbeitrag

Fabian Gruss, Franziska Zähringer, Roman P. Jakob, Björn M. Burmann, Sebastian Hiller, Timm Maier.
The structural basis of autotransporter translocation by TamA.
Nature Structural and Molecular Biology, Published online 23 September 2013
Weitere Auskünfte
Prof. Dr. Timm Maier, Biozentrum der Universität Basel, Tel.: +41 61 267 21 76,
E-Mail: timm.maier@unibas.ch
Prof. Dr. Sebastian Hiller, Biozentrum der Universität Basel, Tel.: +41 61 267 20 82, E-Mail: sebastian.hiller@unibas.ch
Weitere Informationen:
http://www.nature.com/nsmb/journal/vaop/ncurrent/abs/nsmb.2689.html - Abstract

Christoph Dieffenbacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics