Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien steuern Naturstoff-Synthese in Pilzen

30.08.2011
Einem Jenaer Forscherteam um Axel Brakhage und Christian Hertweck ist es gelungen, einen neuartigen Steuerungsmechanismus für die Synthese von Naturstoffen zu finden.

Die Wissenschaftler vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – und der Friedrich-Schiller-Universität Jena konnten in Zusammenarbeit mit der Gruppe von Joseph Strauss aus Wien zeigen, dass bestimmte Bakterien in der Lage sind, Veränderungen an den sogenannten Histonproteinen im Schimmelpilz Aspergillus nidulans auszulösen. Sie führten dazu, dass der Pilz mehrere neue Substanzen bildete. Die Arbeit wurde soeben im renommierten Fachjournal PNAS veröffentlicht.

Mikroorganismen sind eine wichtige Quelle für Arzneistoffe, insbesondere für die meisten heute verwendeten Antibiotika. Um ihr großes Potenzial zu erschließen, bedient man sich heutzutage bei der unablässigen Suche nach neuen Wirkstoffen der Genomanalyse. Ein Blick auf die gesamte genetische Information – das Genom – eines Bakteriums oder Pilzes offenbart dabei häufig sogenannte schlafende Gene, die normalerweise nicht aktiv sind.

Das Jenaer Team aus Mikrobiologen und Naturstoff-Forschern konnte bereits zeigen, dass die gemeinsame Kultivierung eines Bodenbakteriums mit dem Pilz Aspergillus nidulans zu Kommunikationsprozessen führt, in deren Folge solche schlafenden Gene aktiviert werden. Dies führte zur Synthese mehrerer bei diesem Pilz unbekannter Naturstoffe, die möglicherweise als Wirkstoffe genutzt werden können. Unklar blieb jedoch, wie das Bakterium diesen Mechanismus in Gang setzt.

Hans-Wilhelm Nützmann, Stipendiat in der Jena School for Microbial Communication, befasst sich im Rahmen seiner Doktorarbeit mit der Kommunikation von Pilzen mit Bakterien. Ihn interessiert, auf welche Weise der Signalaustausch zwischen diesen Mikroorganismen zur Synthese neuer Naturstoffe führen kann. Die aktuellen Untersuchungen führten Nützmann und seine Kollegen auf die Spur der Histonproteine. Hierbei handelt es sich um Eiweißmoleküle im Zellkern, auf die die DNA ähnlich einer Spule aufgewickelt ist. Die auf der DNA befindlichen Gene werden erst dann aktiv, wenn die dort befindlichen Histone Acetylgruppen tragen. Die Acetylgruppen markieren wie ein kleines Signalfähnchen diejenigen Abschnitte der genetischen Information, die in einer Zelle momentan aktiv sind.

Für diese kleine chemische Modifikation der Histone sind bestimmte Enzyme zuständig, die als Acetyltransferasen bezeichnet werden. Die Wissenschaftler schalteten im Experiment sämtliche Acetyltransferasen nacheinander aus und beobachteten, ob der Kontakt zwischen Pilz und Bakterium weiterhin zur Bildung der neuen Stoffe führte. Bei einer bestimmten Acetyltransferase, sie trägt die Bezeichnung GcnE, war dies nicht mehr der Fall – für die Forscher der Beweis, dass genau dieses Enzym im „Normalfall“ die schlafenden Gene zu aktivieren vermag.

In weiterführenden biochemischen Experimenten konnte das Forscherteam diesen neu entdeckten Mechanismus der Aktivierung von Naturstoff-Genen weiter aufklären. So ist das Enzym GcnE tatsächlich genau an den Genen zu finden, die für die Synthese der neuen Naturstoffe im Pilz zuständig sind. Und dies nur dann, wenn sich Aspergillus nidulans in engem Kontakt mit dem Bodenbakterium befindet. An anderen Genen, deren Aktivität unabhängig von der Wechselwirkung beider Mikroorganismen ist, findet man es dagegen nicht. Die Forscher konnten sogar zeigen, an welcher Stelle am Histoneiweiß die Acetylierung erfolgt.

Die Veröffentlichung der Ergebnisse in der Fachzeitschrift Proceedings of the National Academy of Sciences of the USA zeigt bereits, welch hohen Stellenwert die Arbeit für die Fachwelt besitzt. Sie ist für Wissenschaftler und auch die forschende Pharmaindustrie von großem Interesse, weist sie doch einen Weg zur Auffindung neuer Wirkstoffe in zum Teil schon lange bekannten Mikroorganismen. Für Axel Brakhage eine Bestätigung, den richtigen Weg eingeschlagen zu haben: „Wir setzen in unserer Exzellenz-Graduiertenschule gezielt auf Kommunikationsprozesse bei Mikroorganismen. Uns ist bewusst, dass an der Auseinandersetzung unterschiedlicher Organismen in der Natur viele Substanzen beteiligt sind, die auch für den Menschen nützlich sein können. Diese Schatzkiste gilt es nun zu öffnen – den Schlüssel dazu halten wir in der Hand.“

Originalveröffentlichung:
Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A. 2011. doi: 10.1073/pnas.1103523108. http://www.pnas.org/content/108/34/14282.long
Informationen zum HKI http://www.hki-jena.de
Das Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – wurde 1992 gegründet und gehört seit 2003 zur Leibniz-Gemeinschaft. Die Wissenschaftler des HKI befassen sich mit der Infektionsbiologie human-pathogener Pilze. Sie untersuchen die molekularen Mechanismen der Krankheitsauslösung und die Wechselwirkung mit dem menschlichen Immunsystem. Neue Naturstoffe aus Mikroorganismen werden auf ihre Wirksamkeit gegen Pilzerkrankungen untersucht und zielgerichtet modifiziert.

Das HKI verfügt derzeit über fünf wissenschaftliche Abteilungen, deren Leiter gleichzeitig berufene Professoren der Friedrich-Schiller-Universität Jena (FSU) sind. Hinzu kommen jeweils vier Nachwuchsgruppen und Querschnittseinrichtungen mit einer integrativen Funktion für das Institut, darunter das anwendungsorientierte Biotechnikum als Schnittstelle zur Industrie. Zur Zeit arbeiten etwa 320 Menschen am HKI, darunter 120 Doktoranden.

Informationen zur Leibniz-Gemeinschaft http://www.leibniz-gemeinschaft.de
Die Leibniz-Gemeinschaft vereint 87 Einrichtungen, die anwendungsbezogene Grundlagenforschung betreiben und wissenschaftliche Infrastruktur bereitstellen. Insgesamt beschäftigen die Leibniz-Einrichtungen rund 16.800 Menschen – darunter 7.800 Wissenschaftlerinnen und Wissenschaftler – bei einem Jahresetat von insgesamt knapp 1,4 Milliarden Euro.

Die Leibniz-Gemeinschaft zeichnet sich durch die Vielfalt der in den Einrichtungen bearbeiteten Themen und Disziplinen aus, welche insbesondere den Brückenschlag zwischen den Geistes- und Sozialwissenschaften und den Natur-, Lebens- und Ingenieurwissenschaften ermöglichen. Die Forschungsmuseen der Leibniz-Gemeinschaft bewahren und erforschen das natürliche und kulturelle Erbe. Darüber hinaus sind sie Schaufenster der Forschung, Orte des Lernens und der Faszination für die Wissenschaft.

Ansprechpartner
Dr. Michael Ramm
Wissenschaftliche Organisation
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.
– Hans-Knöll-Institut –
Beutenbergstrasse 11a
07745 Jena
+49(0)3641 5321011 (T)
+49(0)3641 5320801 (F)
michael.ramm@hki-jena.de
Presseservice: pr@hki-jena.de

Dr. Michael Ramm | idw
Weitere Informationen:
http://www.presse.hki-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise