Wie sich Bakterien starken Temperaturschwankungen anpassen

Schematische Darstellung der drei verschiedenen Zustände des RNA-Genschalters. Unterlegt ist eine elektronen-mikroskopische Aufnahme des Bakteriums Vibrio vulnificus bei 13000-facher Vergrößerung (Bild B stammt von der Public Library des CDC erstellt durch Janice Haney Carr und James Gathany)<br>

Wie es das macht, haben Frankfurter Forscher nun erstmals aufgeklärt. In der Fachzeitschrift Nature beschreiben sie einen Gen-Schalter, der seine Struktur in Abhängigkeit von der Verfügbarkeit niedermolekularer Baustoffe und gleichzeitig der Temperatur verändert. Nach diesem Vorbild könnten künftig auch maßgeschneiderte temperatursensitive Genschalter gebaut werden.

In der Zelle regulieren genetische Schalter aus RNA die Proteinbiosynthese. Eine besondere Klasse von genetischen RNA-Schaltern bindet direkt an niedermolekulare Baustoffe wie Adenin. Davon brauchen Zellen mal mehr, und mal weniger. Gibt es wenig Adenin, dann ist der RNA-Schalter aus. Ist dagegen zuviel Adenin vorhanden, dann bindet der Schalter Adenin.

Gleichzeitig schaltet er in den Zellen ein Programm an, um Proteine herzustellen, die diesen Baustoff aus der Zelle entfernen. Wie sich diese Aus-An-Schalter den großen Temperaturschwankungen, denen Vibrio ausgesetzt ist, gleichbleibend gut anpassen können, war bisher nicht bekannt. Die Arbeitsgruppe von Prof. Harald Schwalbe vom Institut für Organische Chemie und Chemische Biologie der Goethe-Universität hat nun das Rätsel dieser regulatorischen Herausforderung für Bakterien gelöst und in der renommierten Fachzeitschrift Nature publiziert.

„Die Funktion dieser RNA ist viel komplexer, als wir zuerst gedacht haben. Sie ändert ihre Gestalt je nach Temperatur und dem Angebot an Adenin“, fasst Anke Reining die Ergebnisse ihrer Doktorarbeit zusammen. Demnach liegt der RNA-Schalter in drei verschiedenen dreidimensionalen Strukturen vor: insbesondere gibt es zwei verschiedene Strukturen, in denen der Genschalter ausgestaltet ist. Bis jetzt ging man davon aus, es gäbe nur einen Aus-Zustand. Welcher der beiden Aus-Zustände nun vorliegt, hängt von der Temperatur ab. „Dieser RNA-Schalter funktioniert wie ein Thermostat, er regelt die Protein-Synthese über einen Temperaturbereich von 40 Grad, um auf Schwankungen der Adenin-Konzentration in konstanter Weise reagieren zu können“, berichtet Dr. Boris Fürtig, wissenschaftlicher Mitarbeiter in Schwalbes Arbeitsgruppe.

„In meinem Team haben wir sehr lange an diesem Puzzle gearbeitet. Dass es zwei verschiedene Aus-Zustände gibt, hat uns verblüfft. Und noch mehr, dass nur einer der beiden Zustände angeschaltet werden kann. Der völlig neuartige Mechanismus bietet Chemikern und Biologen nun einen Bauplan für RNA-Schalter, die auch über den physiologischen bedeutsamen Temperaturbereich von 5 bis 40 Grad Celsius verlässlich arbeiten“, erklärt Harald Schwalbe.

Publikation: Anke Reining, Senada Nozinovic, Kai Schlepckow, Florian Buhr, Boris Fürtig und Harald Schwalbe: Three-state mechanism couples ligand and temperature sensing in riboswitches, Nature, DOI: 10.1038/nature12378

Eine Abbildung zum Download finden Sie hier:
http://www.muk.uni-frankfurt.de/47248191/169
Bildtext:
Schematische Darstellung der drei verschiedenen Zustände des RNA-Genschalters. Unterlegt ist eine elektronen-mikroskopische Aufnahme des Bakteriums Vibrio vulnificus bei 13000-facher Vergrößerung (Bild B stammt von der Public Library des CDC erstellt durch Janice Haney Carr und James Gathany)

Informationen: Prof. Harald Schwalbe, Institut für Organische Chemie und Chemische Biologie, Campus Riedberg, Tel.: (069) 798-29130; schwalbe@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer